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Abstract 

Transmission trees can be established through detailed contact histories, statistical or phylogenetic inference, or a combination of 
methods. Each approach has its limitations, and the extent to which they succeed in revealing a ‘true’ transmission history remains 
unclear. In this study, we compared the transmission trees obtained through contact tracing investigations and various inference meth-
ods to identify the contribution and value of each approach. We studied eighty-six sequenced cases reported in Guinea between March 
and November 2015. Contact tracing investigations classified these cases into eight independent transmission chains. We inferred the 
transmission history from the genetic sequences of the cases (phylogenetic approach), their onset date (epidemiological approach), and 
a combination of both (combined approach). The inferred transmission trees were then compared to those from the contact tracing 
investigations. Inference methods using individual data sources (i.e. the phylogenetic analysis and the epidemiological approach) were 
insufficiently informative to accurately reconstruct the transmission trees and the direction of transmission. The combined approach 
was able to identify a reduced pool of infectors for each case and highlight likely connections among chains classified as independent 
by the contact tracing investigations. Overall, the transmissions identified by the contact tracing investigations agreed with the evo-
lutionary history of the viral genomes, even though some cases appeared to be misclassified. Therefore, collecting genetic sequences 
during outbreak is key to supplement the information contained in contact tracing investigations. Although none of the methods we 
used could identify one unique infector per case, the combined approach highlighted the added value of mixing epidemiological and 
genetic information to reconstruct who infected whom.

Key words: ebola virus (RSV); viral transmission; molecular epidemiology; contact tracing. 
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Introduction
The reconstruction of transmission trees, which link infectors 
and infectees in an outbreak of infectious disease, is a bedrock 
on which many public health decisions are made. Indeed, it is 
necessary not only to identify populations at risk but also to 
understand patterns of pathogen spread to effectively prevent or 
control infectious disease outbreaks. The study of transmission 
linkage and source attribution (i.e. who infected whom) during an 
epidemic is essential, as it allows a better understanding of the 

transmission processes (Lloyd-Smith et al. 2005; Blumberg and 

Lloyd-Smith 2013; Blumberg et al. 2014; Taube, Miller, and Drake 

2021), the identification and quantification of factors associated 

with transmissibility (Faye et al. 2015; Robert et al. 2019; Leclerc 

et al. 2020), the reconstruction of historical epidemiological events 

(Wallinga and Teunis 2004; Ypma et al. 2012; Jombart et al. 

2014; Campbell et al. 2018a; Robert et al. 2020), as well as a 

precise assessment of intervention strategies aiming at reducing 

transmission (Ferguson, Donnelly, and Anderson 2001).
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2 Virus Evolution

Transmission tree reconstruction broadly falls into four cat-
egories: (1) traditional epidemiological investigations such as 
contact tracing, (2) statistical inference based on epidemiologi-
cal factors (e.g. the timing or the location of cases), (3) phylo-
genetic reconstruction from pathogen genomic sequences, and 
(4) combined/evidence synthesis methods, which pool two or 
more of the aforementioned approaches. Contact tracing involves 
the identification and diagnosis of people who may have come into 
contact with an infected person, based on epidemiological data 
directly collected from the interviewed individuals (e.g. age, gen-
der, when and where contact with a confirmed case occurred, and 
time of symptom onset). It is a standard approach that has been 
routinely applied to recent epidemic situations, such as the 2003 
severe acute respiratory syndrome coronavirus (SARS-CoV) epi-
demic (Chen et al. 2005), the 2014–16 Ebola virus (EBOV) outbreak 
in Western Africa (Saurabh and Prateek 2017; Swanson et al. 2018), 
or the newly emerged SARS-CoV-2 epidemic (Kucharski et al. 2020; 
Sun and Viboud 2020). Despite its proven effectiveness, contact 
tracing is sensitive to reporting, ascertainment, or social desirabil-
ity biases (Greiner et al. 2015). It is difficult to implement when 
parts of the infections are driven by pre-symptomatic or asymp-
tomatic cases, when delays from infection to diagnosis are large or 
in the context of retrospective tracing, where recall bias hampers 
precise data collection. Furthermore, contract tracing is expensive 
and time-consuming and its success depends on the experience 
and capacity of healthcare workers to gather social histories.

An alternative means of inferring transmission chains relies on 
probabilistic algorithms through which the most probable trans-
mission pathway of an infectious agent among all possible cases 
is inferred (Wallinga and Teunis 2004; Cauchemez and Ferguson 
2012). The framework developed by Hens et al., for instance, 
exploits the time interval among symptoms onsets, where the 
probability that a case has been infected by another case is esti-
mated given their respective dates of symptom onset and the 
duration of the infectious period of the studied pathogen (Hens 
et al. 2012). These methods are also sensitive to sampling biases 
and heavily depend on accurate estimates of infection times, 
which makes them more suitable to the study of acute infec-
tions than the chronic ones. However, if all cases are treated as 
part of the same homogeneous outbreak, these inference methods 
have the potential to erroneously link individuals presenting with 
symptoms at the same time and place. Finally, they do not take 
into account the evolutionary history of the infecting strain(s), 
making them suboptimal in the case of outbreaks or epidemics 
caused by the concomitant circulation of more than one pathogen 
strain or genotype.

Gene sequences from rapidly evolving infectious agents also 
provide detailed information for transmission tree reconstruc-
tion. Through the inference of phylogenetic trees, which represent 
the evolutionary relationships among sampled pathogens, we can 
identify individuals infected by isolates that are more closely 
related to each other than what would be expected by chance, thus 
inferring epidemiological linkages. Phylogenetic reconstruction is 
widely used in transmission studies, sometimes in conjunction 
with temporal and spatial information (Bezemer et al. 2015). How-
ever, a pathogen phylogeny does not do justice to the underlying 
complexity of a transmission chain. Branching events in a phy-
logeny do not necessarily correspond to transmission events, and 
several transmission scenarios can explain a given phylogenetic 
cluster or tree topology (Hall, Woolhouse, and Rambaut 2015; 
Kenah et al. 2016). Moreover, phylogenetic trees are undirected 
and the direction of transmission between two phylogenetically 
linked individuals is not inferable from conventional sequence 

data, unless information about levels of intra-host diversity is 
available (Maio, Wu, and Wilson 2016; Didelot et al. 2017; Wymant 
et al. 2018).

Most recently, a new generation of methods combining genetic 
and epidemiological evidence has flourished (Cottam et al. 2008; 
Jombart et al. 2014; Kenah et al. 2016; Campbell et al. 2018a). Ypma 
et al. constructed an inference scheme that uses spatial, tem-
poral, and genetic data simultaneously, but assumed that these 
data are independent of each other (Ypma et al. 2012). Alternative 
mixed approaches reconstruct transmission chains by combining 
an explicit epidemiological model with a model of molecular evo-
lution to determine a unique likelihood from which the most likely 
transmitter for each case is inferred without having to reconstruct 
a phylogenetic tree. Recent developments of these methods can 
include the incorporation of contact matrix into the calculation of 
the transmission likelihood function (Campbell et al. 2019, 2018a).

The feasibility of transmission chain reconstructions will 
partly depend on the epidemiological characteristics of a given 
pathogen, such as its incubation period, symptoms, generation 
time, or known routes of transmission, which will determine the 
capacity an investigator has to identify an infection and sample it. 
Genetic characteristics can also play an important role in this con-
text, especially when pathogen genomic information is explicitly 
incorporated in the reconstruction.

It is generally perceived that the addition of genetic informa-
tion to epidemiological data enhances the accuracy of transmis-
sion reconstruction (Campbell et al. 2018b), yet the net value of 
this integration remains unclear. Debates remain as to whether 
incorporating genetic data is useful and cost-effective. The rela-
tive merits of these approaches, their degree of consistency, and 
applicability in outbreak or clinical trial situations remain poorly 
characterised. Moreover, the net value of pathogen sequencing in 
these specific contexts is unclear. New technologies for real-time 
sequencing are appearing (e.g. MinION (Jain et al. 2015)), forcing a 
reassessment of the utility of sequence data generated from pri-
mary samples during an outbreak, for either rapid intervention or 
routine surveillance.

EBOV infections present characteristics that make transmis-
sion chain reconstruction conceivable in most situations. The 
virus is associated with observable symptoms, has a short gen-
eration time, and its primary route of transmission, i.e. physical 
exposure to infected body fluids, is reasonably traceable. Although 
alternative routes of infection exist, such as fomite or aerosol 
transmission, an overwhelming majority of EBOV disease (EVD) 
cases have resulted from physical contact with a symptomatic 
patient (32). Viral genome sequences can also be valuable in 
epidemiological investigations of EBOV outbreaks. The mutation 
rate of the virus permits mutations to accumulate in the time 
between sampling of two individuals in a given transmission pair 
(i.e. an infector and a secondary case) so that their position within 
the transmission tree becomes distinguishable by genetic means, 
despite limited background diversity at the population level. These 
epidemiological or genomic characteristics make EBOV an attrac-
tive model to assess the accuracy of transmission chain inference 
(Campbell et al. 2018b).

We explored the accuracy, sensitivity, and propensity to biases 
of a range of methods for transmission chain inference, including 
phylogenetic reconstruction, statistical inference, and a method 
combining the two. These approaches were tested against empiri-
cal contact tracing data collected in Guinea during the late stages 
of the 2014–16 EVD outbreak in West Africa, with the aim of 
describing the degree of agreement between observed and inferred 
transmission trees.
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Material and methods
The 2014–16 Guinea EBOV outbreak
Between December 2013 and May 2016, West Africa experienced 
the largest and most fatal outbreak of EVD in history with over 
28,000 reported cases and 11,000 reported deaths (World Health 
Organization 2016). Guinea, Sierra Leone, and Liberia were mostly 
affected by multiple and persistent long chains of transmission, 
with smaller and non-sustained transmission or isolated cases 
observed in other countries including Nigeria, Mali, as well as the 
UK and the USA, leading to the declaration of a public health emer-
gency of international concern by the World Health Organization 
on 8 August 2014 ().

Contact tracing
The data used in this study originated from several large datasets 
collected in Guinea during the 2013–16 West Africa Ebola epi-
demic, as part of a wider control effort, subsequently collated and 
linked as described in Robert et al. (2019). Contact tracing infor-
mation was collected by the Ministère de la Santé et de l’Hygiène 
Publique of Guinea (Ministry of Health and Public Hygiene). The 
dataset consisted of 860 confirmed cases of EVD assembled in 
eighty-seven transmission chains and forty-two isolated cases. 
These chains were reconstructed by trained field teams who con-
ducted contact tracing interviews with cases, where possible, and 
their contacts.

The most likely infector or infectors were assigned to each 
case as suggested by the investigation. In addition to relevant 
epidemiological information such as location, age, and date of 
symptom onset for each case, a subset of individuals in the dataset 
were further linked with a database of consensus EBOV genome 
sequences that were collected during the outbreak for the purpose 
of genomic surveillance. We considered that Ebola transmission 
mostly occurred via direct contact with body fluids from infected 
individuals, as was done for the contact tracing analysis during the 
outbreak. We therefore ignored alternative mechanisms of trans-
mission with potentially different epidemiological characteristics 
(such as aerosols). This is in line with local investigations suggest-
ing that the most pre-eminent routes of transmission during the 
2014–16 EVD outbreak were nosocomial, funeral, and household 
transmission (Faye et al. 2015), with the latest being the main route 
in the late stages of the outbreak (Robert et al. 2019).

Viral genomic data
A total of 398 EBOV full genome sequences (18,503 nt) from 
the 2014–16 Guinea outbreak were matched to the transmission 
chain database using national ID and sequence ID. We identified 
178 cases from the transmission chains reconstructed by con-
tact tracing investigations for which viral sequence data were 
available.

Study cohort
Since we aimed to analyse the impact of sequencing on infer-
ence of transmission links, we restricted the study to the trans-
mission chains identified by the contact tracing investigations 
with the highest proportion of cases that had been matched to 
a genome sequence (199 confirmed EVD cases in eight separate 
chains of transmission) (Supplementary Fig. S1). Of these 199 
individuals, the study cohort consisted of the eighty-six cases 
(43.2 per cent) that were linked to their respective consensus EBOV 
genome sequence. In each chain, the proportion of cases linked to 
EBOV genomes ranged from 38 per cent (Chain 6) to 54 per cent 

(Chain 8; see Table 1). Date of symptom onset was recorded for all 
but nine cases (four cases in Chain 1, one in Chain 3, one in Chain 
4, and one in Chain 8). We inferred six of them retrospectively 
from the date of confirmed death due to EVD, using the distribu-
tion between the date of symptom onset and the date of death in 
the dataset, and discarded the last three since the onset date could 
not be deduced from other data (two from Chain 1 and one from 
Chain 8). The selected chains are presented in Fig. 1 and Table 1.

Phylogenetic reconstruction
We reconstructed the maximum-likelihood (ML) phylogeny of 
the selected eighty-six EBOV sequences and 1,446 publicly avail-
able EBOV full genomes (see Supplementary Table S1 for details). 
Sequences were aligned using the software mafft v7.453 (Katoh 
and Standley 2013) and reconstructed in IQ-TREE v1.6.12 (Nguyen 
et al. 2015), under the best-fitting model of nucleotide substi-
tution (TIM + F + R2), as determined by the ModelFinder option 
implemented in IQ-TREE. The tree was rooted against a set of 
twelve EBOV full genomes sampled during the 1976 Zaire outbreak 
(GenBank accession numbers: KY425630, KY425647, MH121168, 
KY425649, KY425637, KY425656, MH121166, KC242791, KY425652, 
KM655246, KY425639, and KC242801). Branch supports were esti-
mated by standard non-parametric bootstrap analysis with 1,000 
replicates.

Phylogenetic clusters including EBOV sequences from the 
studied outbreak were extracted from the abovementioned tree 
and their phylogeny independently reconstructed as described
earlier.

Statistical inference of transmission pathways
We used the R package outbreaker2 to infer the transmission trees 
connecting the eighty-six sequenced cases from (1) the onset dates 
alone (subsequently referred to as the epidemiological approach) 
and (2) the onset dates and the viral genomic sequences of 
the cases (subsequently referred to as the combined approach) 
(Campbell et al. 2018a:).

The model implemented in outbreaker2 infers connections 
among cases, using a Metropolis–Hastings algorithm with Markov 
Chains Monte Carlo (MCMC) to sample from the posterior dis-
tribution of parameters and transmission trees. For each case 𝑖, 
the model estimates the infection date 𝑡𝑖, the infector 𝛼𝑖, and 
the number of missing generations among them 𝜅𝑖. The mutation 
rate of the virus 𝜇 and the proportion of sampled cases 𝜌 are also 
estimated during the inference procedure.

The input data needed to run the models include the distribu-
tion of the serial interval (𝑤) and latent period (𝑓) of the virus, along 
with the genetic sequence (𝑠𝑖) and the onset date (𝑇𝑖) of each case. 
The likelihood associated with each case 𝑖 is written as 

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =𝑔𝑒𝑛𝑜𝑚𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒×𝑠𝑒𝑟𝑖𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

×𝑙𝑎𝑡𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑×𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑐𝑎𝑠𝑒𝑠

𝐿𝑖 = Ω𝜅𝑖(𝑠𝑖|𝑠𝛼𝑖
, 𝜇) 𝑥𝑤𝜅𝑖(𝑡𝑖 − 𝑡𝛼𝑖

|𝜅𝑖)𝑥𝑓(𝑡𝑖 − 𝑇𝑖) 𝑥𝑝(𝜅𝑖|𝜌) (1)

where Ω𝜅𝑖  represents the genomic component of the likelihood, 
given the number of generations and the sequences of the con-
nected cases. In the epidemiological approach, the transmission 
links were inferred without using the genomic component so that 
only the onset dates were informative of the connection among 
the cases, which correspond to setting Ω𝜅𝑖(𝑠𝑖|𝛼𝑖, 𝑠𝛼𝑖

, 𝜅𝑖, 𝜇) = 1 for 
every case in Equation (1).
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4 Virus Evolution

Figure 1. (A) Example of four transmission chains reconstructed from contact tracing investigations and included in the study. The chain identification 
number is indicated in the colour-coded legend. Each circle represents a case, and each case is connected to its assigned infector by an arrow, with the 
direction of the arrow indicating the direction of transmission. Filled circles correspond to cases linked to an available EBOV genome sequence. (B) 
Stacked bar chart depicting the weekly incidence of reported EVD cases in the eight transmission chains, from March to November 2015. Filled bars 
show weekly counts of reported EVD cases with available sequence data and are colour-coded according to their transmission chains in the contact 
tracing investigations. All the transmission chains are displayed in Supplementary Fig. S1.

Table 1. Characteristics of the selected EBOV chains of transmis-
sion.

Chain 
no.

No. of 
cases

No. of sequenced 
cases (%)

No. of 
generations

Duration 
(days)

1 37 15 (41) 10 97
2 15 6 (40) 6 66
3 35 16 (46) 10 130
4 18 7 (39) 8 68
5 24 11 (46) 5 50
6 24 9 (38) 4 34
7 33 15 (46) 6 86
8 13 7 (54) 6 71

The distribution of the latent period was set using a Gamma 
distribution of mean 9.1 days and SD 7.3 days (WHO Ebola 
Response Team 2014), while the distribution of the serial interval 
was described by a Gamma distribution of mean 14.2 days and SD 
7.1 days (Faye et al. 2015).

In outbreaker2, the number of importations in the dataset is esti-
mated from the input parameter 𝜆. This process is presented in 
detail in the study describing outbreaker2, but in short, the higher 
the 𝜆 value is set, the higher the threshold value, and the lower the 
number of cases set as importations (i.e. the level of likelihood 
considered ‘plausible’ is less strict). In this study, we considered 

a high value of 𝜆  for both scenarios (𝜆 = 3), which reduces the 
number of connections deemed implausible. In the Supplemen-
tary Figs S4–S6, we present the results obtained with a lower 
value of 𝜆 and show the limited impact of this parameter on our
conclusions.

The MCMC chains were run for 20,000 iterations with a thin-
ning frequency of one-fiftieth. A burn-in period of 2,000 iterations 
was chosen, leaving 360 sampled trees describing the posterior 
distribution. MCMC traces of the posterior distribution were used 
to assess mixing visually (Supplementary Fig. S2).

Visualisation and comparison of methods
The inferred transmission trees were represented as a matrix 
in which each element corresponds to an infector–infectee pair. 
In this matrix, an element takes a value of 1 if its correspond-
ing infector–infectee pair is present in the transmission tree and 
0 otherwise. By representing each transmission tree in a pos-
terior collection as a matrix, and computing the sum of these 
matrices, a matrix in which each element represents the poste-
rior frequency of its corresponding infector–infectee pair, i.e. the 
number of times the transmission pair appears in the posterior 
collection, was obtained. These matrices were visualised as ‘alpha 
plots’, where the transmission trees reconstructed using the two 
inference methods tested (i.e. statistical inference and combined 
approach) were compared to those identified by contact tracing 

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article/9/1/vead007/7077444 by guest on 24 M

arch 2023



A. Robert et al.  5

investigation. In these plots, the radius of each circle is propor-
tional to the posterior frequency (Supplementary Fig. S3). Alpha 
plots were drawn using outbreaker2.

Results
Epidemic curves
The weekly incidence of the 199 EBOV cases in the eight stud-
ied chains of transmission was plotted over the time of the 
outbreak (Fig. 1 and Supplementary Fig. S1). All cases were 
drawn from the late stage of the epidemic with dates of symp-
tom onset spanning over a period of 8 months from early March 
2015 to November 2015. This period largely coincides with the 
Guinea EBOV vaccine trial (Henao-Restrepo et al. 2017), which 
would have been expected to limit the size of these transmission
chains.

Six of the eight identified chains included symptom onset dates 
between March and August 2015. Of the 196 cases with recorded or 
inferred symptom onset date, 180 (91.8 per cent) started develop-
ing symptoms before August, with the earliest recorded symptom 
onset date being 7 March 2015 (Chain 1) and the latest being 23 
October 2015 (Chain 8). Chain 8 was notably later, with cases 
recorded between August and November 2015. The mean duration 
(time difference between the earliest and latest date of symp-
tom onset) of a chain of transmission was 79.1 days, with a range 
between 34 days (Chain 6) and 130 days (Chain 3).

Phylogenetic inference
The maximum-likelihood phylogeny of the studied sequences is 
shown in Fig. 2. Sequences from the eight transmission chains 
formed two distinct monophyletic clades (labelled Clusters A 
and B), suggesting multiple introductions of the circulating EBOV 
lineages in the studied area (Fig. 2A).

Overall, there was a good agreement between the phyloge-
netic reconstruction and contact tracing investigation: sequences 
from a given transmission chain clustered together in the ML 
trees (Fig. 2B and C), thus confirming the linkages established 
by contact tracing investigation, with three exceptions: (1) one 
sequence sampled from putative Chain 3 (subsequently referred 
to as Case X, indicated by a triangle in Fig. 2A, panel b) was 
genetically distinct from all others and clustered outside of Clus-
ters A and B, suggesting misassignment during contact tracing 
investigations. (2) One sequence from Chain 7 (labelled Case Z, 
indicated by a triangle in Fig. 2B) clustered with sequences from 
Chains 3 and 6, suggesting an allocation to the wrong chain 
of transmission (Chain 7) as a result of a misrecorded symp-
tom onset date. This was further supported by the observation 
that this patient’s timing of symptom onset was significantly 
later than most cases in Chains 3 and 6 but consistent with the 
range of symptom onset dates in Chain 7 to which this case 
was (erroneously) assigned by contact tracing investigations. (3) 
Finally, a sequence with an abnormally long branch length was 
identified (labelled Case Y, corresponding to the arrow in Fig. 2A, 
panel a). Further examination revealed that the sequence was of 
lower quality than the rest of the set (14.6 per cent of uniden-
tified nucleotides, compared to an average of 5.4 per cent per
sequence).

There was also further evidence of unobserved intermediate 
transmissions from the ML tree with sequences from Chains 3/6 
and 1/7 appearing to be intermingled (see Fig. 2B) despite being 
assigned to separate chains of transmission by contact tracing. 
Moreover, ancestral relationships among independent chains were 

observed, with Chain 8 and Chain 5 being extensions of Chain 7 
and Chain 2, respectively, albeit only weakly supported by boot-
strap values. The presence of unobserved links between chains 
is also further supported by the minimal genetic differences 
observed in the sequence dataset. Pairwise nucleotide differences 
ranged from 0 to 10 nucleotide substitutions over 18,500 positions 
within a contact tracing chain and between 0 and 64 nucleotide 
substitutions across chains.

Comparison between epidemiological and 
combined approaches
The transmission trees inferred by the epidemiological and 
the combined approach differed greatly. In the epidemiological 
approach, all cases were linked in the same transmission tree 
(i.e. there was one importation per inferred tree), although differ-
ent cases were identified as the imported one across the sampled 
trees (three cases were classified as the importation in more than 
20 per cent of the trees). Using only the onset date was not enough 
to identify a reduced pool of infectors for each case: on average, 
there were forty-four infectors per case, with a maximum of sixty-
six infectors (Fig. 3A). On the other hand, there was less variance 
among the transmission trees inferred in the combined approach: 
there were five independent identified importations, with the 
same five cases being inferred as importations in more than 99 per 
cent of the sampled trees. The number of potential infectors per 
case was much lower than that in the epidemiological approach 
(eleven infectors on average, with a maximum of 20) (Fig. 3B). 
Adding the pairwise distance among genetic sequences to the 
inference framework was key to identifying independent trans-
mission trees and reducing the number of plausible scenarios of 
transmission.

In the combined approach, only fifteen of the eighty-six indi-
viduals were assigned the same infector in more than 75 per cent 
of the trees (i.e. their most likely infector was clearly identified), 
whereas forty-four cases had more than five infectors assigned in 
at least 5 per cent of the sampled trees. This shows that in the 
majority of cases, the combined approach was not able to identify 
a pool of less than five potential infectors, indicating that com-
bining genetic sequences and onset dates was not sufficient to 
reconstruct who infected whom.

Comparison between inferred trees and contact 
tracing investigations
In the combined approach, the cases tended to group in agreement 
with the chains determined during the contact tracing investi-
gation (Fig. 3). In the epidemiological approach, the chains were 
intermingled: the potential infectors of each case did not belong to 
the same contact tracing chain as their inferred recipients. Cases 
from Chain 8 were the only exception. They were mostly linked to 
other cases from Chain 8 or to the latest cases from Chain 7. This 
may be explained by the fact that most cases from Chain 8 were 
reported more than 2 months later than the other chains (Fig. 1).

We generated the consensus trees of the epidemiological and 
combined approach to highlight the trends represented in the 
alpha plots of Fig. 3. These trees were generated by linking 
each case to their most likely infector and colouring the cases 
by the contact tracing chain they belong to (Fig. 4). Given the 
number of infectors per case across the sampled trees, the con-
sensus trees ignore a lot of information and are mostly useful 
to identify trends (especially in the epidemiological approach), 
while the alpha plots (Fig. 3) give a more complete description 
of the results generated by the inference. The consensus tree 
of the epidemiological approach consisted of a single network 
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6 Virus Evolution

Figure 2. (A) Maximum-likelihood phylogeny of 1,532 full-genome EBOV sequences, with eighty-six from the studied population (red) and 1,446 as 
controls (black). The phylogeny is rooted against twelve sequences sampled during the 1976 Zaire Ebola outbreak (blue). Branch lengths represent 
nucleotide substitutions per site (see the scale bar). Close-up views of the two phylogenetic clusters are shown in subpanels (a) and (b). The blue arrow 
in subpanel (a) indicates the position of an abnormally long branch due to low sequencing quality (from Case Y in Chain 1). The red arrow in subpanel 
(b) indicates the position of an isolate (Case X in Chain 3) that is inferred to be phylogenetically distant from either cluster, thus being likely to have 
been misallocated by contact tracing. (B) Maximum-likelihood phylogeny of the eighty-one full-genome EBOV sequences in Cluster A. Branch supports 
were evaluated using standard non-parametric bootstrap with 1,000 replicates (only values above 90 per cent are shown). The coloured strips indicate 
the general positions of sequences from the five chains of transmission in the phylogenetic tree. The blue triangle indicates the position of the isolate 
from Case Z in Chain 7 inferred to be in the monophyletic clade containing mostly sequences from Chains 3 and 6. (C) Maximum-likelihood phylogeny 
of the thirty-three full-genome EBOV sequences in Cluster B. Branch supports were evaluated using standard non-parametric bootstrap with 1,000 
replicates (only values above 90 per cent are shown).

linking all cases of the contact tracing chains (Fig. 4A). Cases 
from a given chain were not necessarily linked to each other, 
but mostly intermingled along the network, with the exception 
of cases from Chain 8. These clustered together, as expected, 
and were linked to the latest cases from Chain 7. On the other 
hand, with the combined approach, cases were clustered in four 
distinct networks, within which more than one transmission chain 
was represented, alongside one isolated case (Fig. 4B). These four 
groups of transmission suggest that infections in some contact 
tracing chains may have been seeded by the same importation
event:

1. Chains 1, 7, and 8 were grouped together, except for one case 
from Chain 7. The latter was grouped with cases from Chain 
6 instead (identified as Case Z during the phylogenetic recon-
struction) and one case from chain 1 (previously identified as 
Case Y).

2. Cases from Chains 2 and 5 were exclusively grouped 
together.

3. Cases from Chains 3 and 6 were grouped together, except for 
one case from Chain 3, which was grouped with cases from 
Chain 4 (previously identified as Case X).

4. All cases from Chain 4 were grouped together.
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Figure 3. Alpha plots representing the posterior distribution of ancestry assignments obtained using the dates of symptom onset only (Panel A), and 
the dates of symptom onset and the genetic sequences (Panel B) as the data source. The radius of each circle indicates the frequency of a given 
transmission pair in the posterior distribution (i.e. posterior frequency). An imported case is assigned an infector of index 0. Circles representing 
within-chain transmission pairs are colour-coded by the chain of transmission. Circles representing cross-chain transmission pairs are coloured grey.

Figure 4. Consensus transmission trees inferred with each approach. Each circle represents a case, and each case is connected to its most likely 
infector in the posterior distribution of ancestry assignments (the direction of the arrow indicates the infector–infectee relationship). Circles are 
colour-coded according to their transmission chain in the contact tracing investigations (see Fig. 1). (A) Consensus transmission tree obtained with the 
epidemiological approach; (B) consensus transmission tree obtained with the combined approach.

The clusters generated by the epidemiological and combined 
approaches were robust to changes in the importation thresh-
old 𝜆 (Supplementary Figs S4–S6): The number of importations 
increased abruptly in the epidemiological approach when 𝜆 was 
reduced; however, the method was not able to identify which cases 
were imported (i.e. all cases are classified as importations in some 
of the iterations). This increase in the number of importations was 
likely due to the small variance between the likelihood of connec-
tions. On the other hand, the groups highlighted by the combined 
approach in Fig. 4 are still visible in Supplementary Fig. S5, show-
ing the high likelihood of connections between chains in Groups 
1, 2, and 3.

The alpha plots indicated that the misplaced cases were 
exclusively associated with cases from different transmission 
chains (Fig. 3). These three cases (i.e. the isolated importation from 
Chain 1 and the two misplaced cases) had already been iden-
tified in the phylogenetic analysis. Therefore, according to their 
genetic sequences, these infections were deemed unrelated to 
the transmission chain they were assigned to by contact tracing 
investigations.

We explored the links among the contact tracing chains within 
the four groups identified in the consensus trees. To do so, we 
excluded the three misplaced cases and calculated the propor-
tion of connections between each chain: for each contact tracing 
Chain X, we computed the average proportion of the infectors 
of cases from Chain X who belong to Chain Y over the sampled 
trees in both approaches (Fig. 5). In the epidemiological approach, 
all chains were intermingled and no independent grouping could 
be identified. With the combined approach, we observed that all 
the cross-chain transmissions reported in the sampled trees fol-
lowed the groups presented in Fig. 4. In Group 2, we were not able 
to highlight a direction of transmission between chains. Indeed, 
cases from Chain 2 were potential infectors of cases from Chain 
5 and vice versa. We observed a similar pattern for Chains 3 and 
6 in Group 3. In Group 1, there was a clear direction of transmis-
sion from Chain 1 to Chain 7 and from Chain 7 to Chain 8. There 
were only a small number of transmissions from cases belonging 
to Chain 7 to cases from Chain 1 (less than 5 per cent of the trans-
mission links towards Chain 1). Finally, the cases from Chain 4 
were not connected to any other chain.

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article/9/1/vead007/7077444 by guest on 24 M

arch 2023



8 Virus Evolution

Figure 5. Alpha plots representing the connectivity between the contact 
tracing transmission chains in the epidemiological approach (Panel A) 
and the combined approach (Panel B). The three misplaced cases 
identified in Fig. 4 were removed. The radius of each circle corresponds 
to the frequency of transmission among chains, which was computed as 
the average proportion of infection of cases from the infectee chain by 
cases from the infector chain, across all iterations. Imported cases were 
not taken into account in the computation of the frequency. Circles 
representing within-group transmission pairs are colour-coded by group 
(as observed in Fig. 4).

In the contact tracing investigations, forty-four of the 
sequenced cases were linked (directly or through unsequenced 
cases) to another sequenced case. For each of these forty-four 
cases, we computed the proportion of iterations where they were 
linked to the same infector as in the contact tracing investiga-
tions (Fig. 6).

In the epidemiological approach (Panel A), no cases were linked 
to their contact tracing infector in more than 40 per cent of 
the sampled trees. Two cases belonging to Chains 2 and 3 were 
matched to their infector in more than 20 per cent of the trees, 
because their onset date was among the earliest of the study sam-
ple, and therefore they had a limited number of potential infec-
tors. Similarly, cases from Chains 7 and 8 have higher proportions 
of matching infectors because they are temporally isolated from 
the other chains and have fewer potential infectors. Otherwise, 
the percentage of matching infectors was below 5 per cent.

In the combined approach (Panel B), we observed three groups 
of cases:

• Group 1 consisted of ten cases linked to their ‘contact trac-
ing’ infector in at least 50 per cent of the sampled trees. The 
infector identified by contact tracing was also their most likely 
infector in the inferred transmission matrix, which indicates 
that the combined approach supported the conclusions from 
the contact tracing investigations.

• Group 2 consisted of fifteen cases linked to the contact trac-
ing infector in 10 to 50 per cent of sampled trees. In this case, 
the ‘contact tracing’ infector was part of the pool of poten-
tial infectors but was not identified as the most likely. Either 
they belonged to a set of equally likely infectors, or there was 
another case that was more often classified as the infector.

• Group 3 consisted of twenty cases almost never linked to 
the contact tracing infector (the proportion of iterations was 
below 10 per cent). In this case, the combined approach was 
in clear disagreement with the contact tracing investigations. 
Although the cases belonged to the same transmission chain, 
they were unlikely to be linked, indicating that there were 
other cases belonging to this chain whose genetic sequences 
were more similar to that of the infectee.

Discussion
Wept explored the ability of different data sources and inference 
methods to reconstruct the transmission trees during the late 

stages of the 2013–16 EVD outbreak in Guinea. Using a dataset of 
eighty-six sequenced cases, linked together in eight transmission 
chains by contact tracing investigations, we ran a set of phy-
logenetic and inference analyses using their genetic sequences 
and timing of infection. We found that, in this setting, individual 
data sources (i.e. either epidemiological or genomic) were insuf-
ficiently informative to accurately reconstruct the transmission 
trees. The phylogenetic analyses were globally consistent with the 
contact tracing investigations (i.e. most cases from each transmis-
sion chain were grouped in the same cluster) while disproving a 
number of links mistakenly inferred from contact tracing investi-
gations. Furthermore, phylogenetic reconstruction confirmed the 
presence of multiple independent importations of the virus in 
the studied area, while also highlighting links among transmis-
sion chains deemed to be separate through contact tracing, likely 
because of unsampled links. However, direct linkage and direction 
of transmission could not be inferred from genome analysis alone.

The inference of transmission trees from the symptom onset 
dates of the cases proved suboptimal. This approach failed to dis-
tinguish different transmission chains, most likely due to the large 
amount of overlapping onset dates and infectiousness periods 
across the sampled individuals. The average number of potential 
infectors per case across the inferred trees exceeded forty, and all 
cases were grouped in a single, large transmission chain, in contra-
diction with the contact tracing investigations and phylogenetic 
reconstruction. This observation suggests that inference solely 
based on the timing of infections is insufficient to gain insight into 
the history and patterns of transmission when multiple transmis-
sion chains are ongoing simultaneously.

The combined approach, whereby both the onset date and 
genetic sequences are used to infer the transmission trees, was 
able to (1) identify a reduced pool of potential infectors for each 
case, (2) highlight which contact tracing links were inconsistent 
with the sequence data, and (3) identify strong links among cer-
tain chains. Therefore, combining the data sources was crucial to 
gain more insights into the dynamics of transmission.

These findings have multiple implications for data collection 
and outbreak control. First, the fact that the transmission dynam-
ics captured by the contact tracing investigations was consistent 
with most of the sequence data confirms that timely contact trac-
ing is an effective way to assess the scope of transmission during 
Ebola outbreaks. However, few discrepancies between the inferred 
transmission trees and the contact tracing chains suggest that 
there is potential for bias in contact tracing investigations. Recon-
structing the exhaustive history of contacts for a given case can 
be challenging, mostly because of recall bias, logistical issues, or 
the identification and enrolment of the contact persons (Greiner 
et al. 2015; Swanson et al. 2018). Our study shows that sequenc-
ing of cases can help address this challenge, by identifying a 
reduced pool of potential infectors per case (and highlight con-
nections missed by epidemiological investigations) and excluding 
unrelated cases where transmission links would be implausible 
given the differences in genetic sequences. Since only a proportion 
of the cases can be sequenced during EVD outbreaks, the dataset 
reconstructed by contact tracing investigations integrated a larger 
proportion of the total number of infected individuals and pre-
sented a more thorough description of the transmission dynamics 
during the outbreak. The overall agreement between the com-
bined inference approach and the contact tracing investigations 
suggests that the latter enabled the gathering of an adequate core 
of information for the identification of most contacts. Therefore, in 
this case, the contact tracing dataset was a reliable data source to 
study outbreak dynamics and the factors associated with onward 
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Figure 6. Proportion of sampled trees where the cases are linked to their contact tracing infector, in the epidemiological approach (Panel A) and the 
combined approach (Panel B).

transmissions. This may not be the case in all outbreak investiga-
tions, especially when asymptomatic individuals, which are more 
challenging to identify, are involved.

The integration of genetic sequences in the inference method 
also permitted the identification of links among transmission 
chains, which had been deemed unrelated from the contact trac-
ing investigations. Indeed, certain transmission chains appeared 
intermingled (i.e. the inferred trees showed several cross-chain 
transmissions, in both directions), whereas others branched off 
an earlier chain (e.g. certain cases from Chain 7 were linked to 
those from Chain 1). These links were not recovered by contact 
tracing investigations, effectively resulting in an underestimation 
of the length and scope of the transmission chains and indicating 
that the number of concurrent chains stemming from indepen-
dent importations was lower than expected. We observed that 
the transmissions among chains classified as independent by 
the contact tracing investigations remained when we allowed a 
larger number of independent importations in the inference of 
the transmission chains, which shows that the inference method 
considers them at least as likely as most intra-chain links. Again, 
this indicates that viral genome comparison conclusively sup-
plements the contact tracing investigations, as it highlights con-
nections that were not identified through patient and contact
interviews.

Our findings stress the importance of maximising the propor-
tion of reported cases that get sequenced during EVD outbreaks. 
In this study, only a small fraction of the cases identified from the 
contact tracing investigations were matched to a viral sequence 
(20 per cent). Even in the transmission chains selected for the 
analysis, the majority of cases were not sequenced (between 38 
and 54 per cent of cases per chain were sequenced). Increasing 
the proportion of sequenced cases would increase the informa-
tion brought by inference methods and facilitate the comparison 
between contact tracing investigations and genomic data. The 
results we present show that the additional information brought 
by sequence data during EVD outbreaks is crucial to narrow down 
the pool of potential transmitters for a given case and identify 
transmission dynamics missed by the contact tracing investiga-
tions. It is, however, important to note that genomic data must 

be available and interpretable by contact tracers in near-real time 
to be useful as a control tool in outbreak situations, where time is 
key. Maximising the proportion of sequenced cases could also help 
identify different modes of transmission. Currently, discrepancies 
between phylogenetic and epidemiological reconstruction of two 
sequenced cases could be attributed to unsequenced infectors 
(either among the cases or common ancestors). If the proportion 
of sequenced cases had been higher, such a difference could have 
been attributed to different modes of transmission that have not 
been considered during the contact tracing investigations.

Our results also indicate that using the timing of infections 
alone was not sufficient to gain insights into the transmission 
dynamics in this dataset, and we believe that more epidemiologi-
cal variables would need to be integrated in the model to improve 
the accuracy of the transmission tree inference. For instance, 
integrating spatial information or age group stratification of the 
cases into the likelihood of connection among cases may help 
disentangle the different independent transmission chains that 
are co-circulating at a given time and identify imported cases 
with better accuracy (Robert et al. 2020). However, this would 
require adding prior information or estimating the movement 
among regions (to study the impact of the location of the cases) or 
the number of contacts between age groups in the country, infor-
mation that can prove difficult to collect or infer. Therefore, this 
would be especially relevant if the outbreak was contained in a 
smaller, ‘enclosed’ environment (as in the case of outbreaks in 
schools or hospitals) or if precise contact or movement informa-
tion is routinely collected through modern technologies (e.g. air 
traffic records, contact tracing applications or devices, and social 
media data).

Although the conclusions of this study may be generalisable 
to other EVD outbreaks, or to other pathogens, it is important to 
note the impact of various factors on the reconstruction. First, fac-
tors specific to the life cycle of the studied pathogen (here EBOV) 
can influence the performance of the reconstruction methods and 
the phylogenetic approach (Campbell et al. 2018b; Huber et al. 
2022). For instance, the rate of evolution of the pathogen of inter-
est needs to be sufficiently high to generate population diversity 
within short time frames. This background diversity needs to be 
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large enough to allow the identification of genomes that are more 
closely related to each other than you would expect by chance, 
a criterion indicative of recent transmission among the sample 
cases. Reciprocally, the generation time of the pathogen of inter-
est should be long enough to allow the acquisition of informative 
nucleotide substitutions. In the case of EBOV, the distributions of 
the incubation period and the serial interval were wide, resulting 
in multiple likely infectors to be reported over a large time period. 
A pathogen with shorter and narrower distributions may be more 
adapted to the epidemiological approach. Second, factors related 
to the settings and context may have favoured certain inference 
methods: for instance, a strictly epidemiological approach may 
have performed better if there had been fewer concurrent chains 
over a longer time span.

In this study, we took the decision to only include sequenced 
cases in the final dataset in order to ensure that the likelihood 
of connection between cases was comparable. Otherwise, connec-
tions among sequenced cases would automatically be penalised 
(Ω = 1 if one of the two linked cases is unsequenced, Ω > 1 oth-
erwise), which could introduce biases. Working towards a bet-
ter inclusion of sequenced and unsequenced cases is an area 
of improvement for future analyses and would be crucial to 
make sure that the reconstruction analyses incorporates as many 
reported cases as possible.

Data availability
The epidemiological and sequence data cannot be shared publicly 
for ethical reason. To make this study as reproducible as pos-
sible, we generated simulated transmission chains and applied 
the same analysis plan. The code used to generate the simu-
lated chains and all the figures presented in the paper are shared 
in the following Github repository: https://github.com/alxsrobert/
evd-transmission-trees.

Supplementary data
Supplementary data are available at Virus Evolution online.
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