5 research outputs found

    The Genetic Age: Who Owns the Genome?: A Symposium on Intellectual Property and the Human Genome, 2 J. Marshall Rev. Intell. Prop. L. 6 (2002)

    Get PDF
    A Symposium on Intellectual Property Co-Sponsored by The Woodrow Wilson Center. Featuring the remarks of Scott A. Brown, J.D.; Q. Todd Dickinson, J.D.; Stephen P.A. Fodor, Ph.D.; Justin Gillis; Hon. Lee H. Hamilton; Eric S. Lander, Ph.D.; and Pilar Ossorio, Ph.D., J.D

    Evolutionarily conserved sequences on human chromosome 21

    Get PDF
    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes

    Evolutionarily conserved sequences on human chromosome 21

    No full text
    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes
    corecore