12 research outputs found

    Species composition and insecticide resistance in malaria vectors in Ellibou, southern CĂ´te d'Ivoire and first finding of; Anopheles arabiensis; in CĂ´te d'Ivoire

    Get PDF
    Background Knowing the species composition and insecticide resistance status of the target vector population is important to guide malaria vector control. The aim of this study was to characterize the malaria vector population in terms of species composition, insecticide susceptibility status and potential underlying resistance mechanisms in Ellibou, southern CĂ´te d'Ivoire. Methods A 1-year longitudinal entomological survey was conducted using light traps and pyrethroid spray catches to sample adult mosquitoes in combination with larval sampling. The susceptibility status of Anopheles gambiae sensu lato (s.l.) to bendiocarb, deltamethrin, DDT and malathion was assessed using the World Health Organization insecticide susceptibility test. Additionally, An. gambiae specimens were screened for knockdown (kdr) and acetylcholineesterase (ace1) target site resistance alleles, and the expression levels of eight metabolic resistance genes, including seven cytochrome P450 monooxygenases (P450s) and one glutathione S-transferase (GST), measured with reverse transcription quantitative real-time polymerase chain reaction (qPCR). Results Overall, 2383 adult mosquitoes from 12 different taxa were collected with Culex quinquefasciatus and An. gambiae being the predominant taxa. Molecular identification of An. gambiae s.l. revealed the presence of Anopheles arabiensis, Anopheles coluzzii, An. gambiae sensu stricto (s.s.) and Anopheles coluzzii/An. gambiae s.s. hybrids. Anopheles gambiae mosquitoes were resistant to all insecticides except malathion. PCR diagnostics revealed the presence of ace1-G280S and the kdr L995F, L995S and N1570Y target-site mutations. Additionally, several genes were upregulated, including five P450s (i.e., CYP6P3, CYP6M2, CYP9K1, CYP6Z1, CYP6P1) and GSTE2. Conclusion This is the first documented presence of An. arabiensis in CĂ´te d'Ivoire. Its detection - together with a recent finding further north of the country - confirms its existence in the country, which is an early warning sign, as An. arabiensis shows a different biology than the currently documented malaria vectors. Because the local An. gambiae population was still susceptible to malathion, upregulation of P450s, conferring insecticide resistance to pyrethroids, together with the presence of ace1, suggest negative cross-resistance. Therefore, organophosphates could be an alternative insecticide class for indoor residual spraying in the Ellibou area, while additional tools against the outdoor biting An. arabiensis will have to be considered

    Multi-insecticide resistant malaria vectors in the field remain susceptible to malathion, despite the presence of Ace1 point mutations

    Get PDF
    Insecticide resistance in Anopheles mosquitoes is seriously threatening the success of insecticide-based malaria vector control. Surveillance of insecticide resistance in mosquito populations and identifying the underlying mechanisms enables optimisation of vector control strategies. Here, we investigated the molecular mechanisms of insecticide resistance in three Anopheles coluzzii field populations from southern Cote d'Ivoire, including Agboville, Dabou and Tiassale. All three populations were resistant to bendiocarb, deltamethrin and DDT, but not or only very weakly resistant to malathion. The absence of malathion resistance is an unexpected result because we found the acetylcholinesterase mutation Ace1-G280S at high frequencies, which would typically confer cross-resistance to carbamates and organophosphates, including malathion. Notably, Tiassale was the most susceptible population to malathion while being the most resistant one to the pyrethroid deltamethrin. The resistance ratio to deltamethrin between Tiassale and the laboratory reference colony was 1,800 fold. By sequencing the transcriptome of individual mosquitoes, we found numerous cytochrome P450-dependent monooxygenases - including CYP6M2, CYP6P2, CYP6P3, CYP6P4 and CYP6P5 - overexpressed in all three field populations. This could be an indication for negative cross-resistance caused by overexpression of pyrethroid-detoxifying cytochrome P450s that may activate pro-insecticides, thereby increasing malathion susceptibility. In addition to the P450s, we found several overexpressed carboxylesterases, glutathione S-transferases and other candidates putatively involved in insecticide resistance

    Removal of imidacloprid using activated carbon produced from ricinodendron heudelotii shells

    Get PDF
    In this study, Ricinodendron heudelotii (akpi) shells are used as precursor to prepare activated carbon via chemical activation using phosphoric acid. The characterization of the obtained activated carbon is performed using X-ray diffraction (XRD), Boehm titration method and adsorption of acetic acid. The results show that the prepared activated carbon has a microstructure and a higher specific surface area (1179 m2/g), suggesting that the acid treatment has a significant positive influence on its sorption properties. The maximum adsorption capacity and pollutant elimination efficiency are found to be 43.48 mg/g and 90%, respectively. These results suggest that this low cost agent is an efficient tool to remove organic pollutants especially imidacloprid from wastewater

    Insecticides Resistance Status of An. gambiae in Areas of Varying Agrochemical Use in Côte D’Ivoire

    Get PDF
    Background. Insecticide resistance monitoring of the malaria vectors to different classes of insecticides is necessary for resistance management. Malaria vector control management approaches are essentially based on IRS and LLINs. However, insecticide resistance is caused by several sources of selection and in case the selection pressure is from agricultural practices, then measures need to be taken to avoid a failure of the control methods put in place. The current study was undertaken to monitor the susceptibility of vectors to different classes of insecticides in areas of varying agrochemical use patterns. Methods. A survey to determine the agricultural chemical use pattern was undertaken in ten localities across Côte d’Ivoire. In addition, WHO susceptibility tests were carried out on adults Anopheles gambiae s.l. mosquitoes emerging from collected larvae from the sites surveyed. Four insecticides from each class of the four classes of insecticides were evaluated using the standard susceptibility test methods. Furthermore, the target site mutations involved in resistance mechanisms were identified following the Taqman assay protocols and mosquito species were identified using SINE-PCR. Results. The mortalities of all the An. gambiae s.l populations were similar regardless of the pesticide use pattern. The vectors were resistant to DDT, deltamethrin, and bendiocarb in all localities. In contrast, mosquitoes showed high susceptibility to malathion. High frequency of the Kdr-West gene allele was observed (70-100%). A single Kdr-East mutation was identified in a mosquito that harboured both Ace-1 and Kdr-West genes. Conclusion. Cultivated marshlands representing good habitats for mosquito development may deeply contribute to the selection of resistance genes given the intensive use of agrochemical for crop protection. In view of these, special attention must be given to them to mitigate mosquito resistance to insecticides

    Impact of 19 years of mass drug administration with ivermectin on epilepsy burden in a hyperendemic onchocerciasis area in Cameroon

    Get PDF
    Abstract Background Surveys conducted in 1991–1992 in the Mbam Valley (Cameroon) revealed that onchocerciasis was highly endemic, with community microfilarial loads (CMFL) > 100 microfilariae/snip in some villages. Also in 1991–1992, a survey of suspected cases of epilepsy (SCE) found 746 SCE using a questionnaire administered to individuals identified by key informants, with prevalences reaching 13.6% in some communities. From 1998, annual community-directed treatment with ivermectin (CDTI) was implemented to control onchocerciasis. In 2017, a door-to-door household survey was conducted in three of the villages visited in 1991–1992, using a standardized 5-item epilepsy screening questionnaire. Results In 2017, a total of 2286 individuals living in 324 households were screened (582 in Bayomen, 553 in Ngongol and 1151 in Nyamongo) and 112 SCE were identified (4.9%). Neurologists examined 92 of these SCE and confirmed the diagnosis of epilepsy for 81 of them (3.5%). Between the surveys in 1991–1992 and 2017, the prevalence of SCE decreased from 13.6% to 2.5% in Bayomen (P = 0.001), from 8.7% to 6.6% in Ngongol (P = 0.205) and from 6.4% to 5.4% in Nyamongo (P = 0.282). The median age of SCE shifted from 20 (IQR: 12–23) to 29 years (IQR: 18–33; P = 0.018) in Bayomen, from 16 (IQR: 12–21) to 26 years (IQR: 21–39; P < 0.001) in Ngongol and from 16 (IQR: 13–19) to 24 years (IQR: 19–32; P < 0.001) in Nyamongo. The proportions of SCE aged < 10, 10–19, 20–29 and ≥ 30 years shifted from 9.5, 58.3, 25.0 and 7.1% in 1991–1992 to 2.7, 20.5, 39.3 and 37.5% in 2017, respectively. Conclusions SCE prevalence decreased overall between 1991–1992 and 2017. The age shift observed is probably due to a decrease in the number of new cases of epilepsy resulting from the dramatic reduction of Onchocerca volvulus transmission after 19 years of CDTI
    corecore