32 research outputs found

    Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air

    Get PDF
    In the aqueous phase, fine particulate matter can form reactive species (RS) that influence the aging, properties, and health effects of atmospheric aerosols. In this study, we explore the RS yields of aerosol samples from a remote forest (Hyytiala, Finland) and polluted urban locations (Mainz, Germany; Beijing, China), and we relate the RS yields to different chemical constituents and reaction mechanisms. Ultra-high-resolution mass spectrometry was used to characterize organic aerosol composition, electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique was applied to determine the concentrations of (OH)-O-center dot, O-2(center dot-), and carbon-or oxygen-centered organic radicals, and a fluorometric assay was used to quantify H2O2. The aqueous H2O2-forming potential per mass unit of ambient PM2.5 (particle diameter < 2.5 mu m) was roughly the same for all investigated samples, whereas the mass-specific yields of radicals were lower for sampling sites with higher concentrations of PM2.5. The abundances of water-soluble transition metals and aromatics in ambient PM2.5 were positively correlated with the relative fraction of (OH)-O-center dot and negatively correlated with the relative fraction of carbon-centered radicals. In contrast, highly oxygenated organic molecules (HOM) were positively correlated with the relative fraction of carbon-centered radicals and negatively correlated with the relative fraction of (OH)-O-center dot. Moreover, we found that the relative fractions of different types of radicals formed by ambient PM2.5 were comparable to surrogate mixtures comprising transition metal ions, organic hydroperoxide, H2O2, and humic or fulvic acids. The interplay of transition metal ions (e.g., iron and copper ions), highly oxidized organic molecules (e.g., hydroperoxides), and complexing or scavenging agents (e.g., humic or fulvic acids) leads to nonlinear concentration dependencies in aqueous-phase RS production. A strong dependence on chemical composition was also observed for the aqueous-phase radical yields of laboratory-generated secondary organic aerosols (SOA) from precursor mixtures of naphthalene and beta-pinene. Our findings show how the composition of PM2.5 can influence the amount and nature of aqueous-phase RS, which may explain differences in the chemical reactivity and health effects of particulate matter in clean and polluted air.Peer reviewe

    Nitration of Wheat Amylase Trypsin Inhibitors Increases Their Innate and Adaptive Immunostimulatory Potential in vitro

    Get PDF
    Amylase trypsin inhibitors (ATI) can be found in all gluten containing cereals and are, therefore, ingredient of basic foods like bread or pasta. In the gut ATI can mediate innate immunity via activation of the Toll-like receptor 4 (TLR4) on immune cells residing in the lamina propria, promoting intestinal, as well as extra-intestinal, inflammation. Inflammatory conditions can induce formation of peroxynitrite (ONOO−) and, thereby, endogenous protein nitration in the body. Moreover, air pollutants like ozone (O3) and nitrogen dioxide (NO2) can cause exogenous protein nitration in the environment. Both reaction pathways may lead to the nitration of ATI. To investigate if and how nitration modulates the immunostimulatory properties of ATI, they were chemically modified by three different methods simulating endogenous and exogenous protein nitration and tested in vitro. Here we show that ATI nitration was achieved by all three methods and lead to increased immune reactions. We found that ATI nitrated by tetranitromethane (TNM) or ONOO− lead to a significantly enhanced TLR4 activation. Furthermore, in human primary immune cells, TNM nitrated ATI induced a significantly higher T cell proliferation and release of Th1 and Th2 cytokines compared to unmodified ATI. Our findings implicate a causative chain between nitration, enhanced TLR4 stimulation, and adaptive immune responses, providing major implications for public health, as nitrated ATI may strongly promote inhalative wheat allergies (baker's asthma), non-celiac wheat sensitivity (NCWS), other allergies, and autoimmune diseases. This underlines the importance of future work analyzing the relationship between endo- and exogenous protein nitration, and the rise in incidence of ATI-related and other food hypersensitivities

    Chemical modification of proteins by air pollutants and metaproteomic analysis of atmospheric aerosol samples by HPLC‐MS analyses

    No full text
    Proteins are a major component of bioaerosols and can account for several percent of air particulate matter. They may influence the climate and public health depending on their properties, e.g., hygroscopicity, molecular composition and structure. The interaction with anthropogenic air pollutants can modify their physical, chemical and biological properties, thus altering their climate and health effects. In particular, chemical modifications of proteins (e.g., nitration and cross‐linking) induced by air pollutants, have been linked to an enhanced potency of allergenic proteins. The mechanisms and kinetics of the underlying chemical processes, however, are not yet well understood. In this thesis, the reaction products, kinetics and mechanisms of atmospheric protein chemistry were studied, and the proteome of atmospheric aerosol samples was characterized using high performance liquid chromatography coupled with diode array detection and fluorescence detection (HPLC‐DAD and HPLC‐DAD‐FLD), and HPLC coupled to mass spectrometry (HPLC‐MS/MS). The focus areas of this thesis can be summarized as follows: 1.Development of a method to characterize proteins from atmospheric aerosol samples using a mass spectrometry‐based metaproteomic approach. Extraction solvents were optimized to overcome the interaction between proteins and glass fiber filters and achieve high protein recoveries. Size exclusion chromatography (SEC) was applied to remove matrix components. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) was applied for protein fractionation according to molecular size, followed by in‐gel digestion. The digested peptides were analyzed using a hybrid Quadrupole‐Orbitrap MS and database search functions. The developed method has been successfully applied for protein identification from filters samples collected in central Europe (Mainz, Germany). The presented method provides a tool for further studies of spatiotemporal variability of bioparticles and allergens in atmospheric aerosol samples. 2.Elucidation of the mechanisms and kinetics of protein nitration and oligomerization induced by ozone (O3) and nitrogen dioxide (NO2). Proteins were exposed to O3, and O3/NO2 mixtures in coated‐wall flow‐tube and bulk-solution experiments, using bovine serum albumin (BSA) as a model protein. An SEC‐HPLC‐DAD method was developed that enables the simultaneous detection of mono‐, di‐, tri‐, and higher protein oligomers as well as their individual nitration degrees (NDs). In the reaction of BSA with O3, the formation of protein dimers, trimers and higher oligomers was observed. The SDS‐PAGE and fluorescence analysis results revealed that the protein cross‐linking can be attributed to the formation of intermolecular dityrosine species. For the reactions of BSA with O3 and NO2, more tyrosine residues were found to react via the nitration pathways than via the oligomerization pathways. Depending on reaction conditions, oligomer mass fractions and NDs were in the range of 2.5‐25% and 0.5‐7%, respectively. The extent of protein nitration and oligomerization strongly depended on the phase state of proteins (i.e., amorphous solid, semi‐solid, liquid) and hence the diffusivity of oxidants and protein molecules, which change with relative humidity. The experimental results can be explained and described by a kinetic multi‐layer model of surface and bulk chemistry. The rates of both processes were sensitive to the increase of O3 concentrations but rather insensitive to the change in ambient NO2 concentrations. 3.Identification and quantification of free amino acids released upon oxidation of peptides and proteins by hydroxyl radicals. The oxidation products of proteins and peptides generated by hydroxyl radicals from Fenton reactions were analyzed using HPLC‐MS/MS and HPLC‐DAD‐FLD. Free amino acids were identified as products by HPLC‐MS/MS analysis. A site‐selective formation of free amino acids was also observed, which may be due to a reaction pathway involving nitrogen‐centered radicals. For protein oxidation reactions, the molar yields of glycine (Gly, ~32‐55% for BSA, ~10‐21% for ovalbumin (OVA)) were substantially higher than for the other identified amino acids (i.e., alanine, aspartic acid, and asparagine; ~5‐12% for BSA, ~4‐6% for OVA). Upon oxidation of tripeptides with Gly in C‐terminal, mid‐chain, or N‐terminal positions, Gly was preferentially released when it was located at the C‐terminal site. The methods developed and reaction products, kinetics, and mechanisms studied in this thesis provide a basis for further investigations of atmospheric protein chemistry influenced by air pollutants. They shall help to understand the relations between air pollutant‐modified aeroallergens and their enhanced allergenicity.Proteine sind eine Hauptkomponente biologischer Aerosolpartikeln können mehrere Prozent der gesamten Partikelmasse in der Luft ausmachen. Diese Proteine können abhĂ€ngig von ihren Eigenschaften, wie HygroskopizitĂ€t, molekularer Zusammensetzung und Struktur, das Klima der Erde beeinflussen und sich auf die Gesundheit der Lebewesen auswirken. Durch die Wechselwirkungen mit anthropogenen Luftschadstoffen können die physikalischen, chemischen und biologischen Eigenschaften der Proteine modifiziert werden und demnach Auswirkungen auf das Klima und die Gesundheit haben. Insbesondere die von Luftschadstoffen hervorgerufene chemische Modifikationen von Proteinen (z.B. Nitrierung und Quervernetzung) konnten bereits mit einer verstĂ€rkten Allergenwirkung der entsprechenden Proteine in Zusammenhang gebracht werden. Allerdings sind weder die Mechanismen noch die Kinetik der zugrundeliegenden chemischen Prozesse ausreichend verstanden. In der vorliegenden Doktorarbeit wurden basierend auf der Anwendung von HochleistungsflĂŒssigkeitschromatographie gekoppelt mit Diodenarray-Detektion und Fluoreszenzdetektion (HPLC-DAD und HPLC-FLD), sowie HPLC gekoppelt an Massenspektrometrie (HPLC-MS/MS) die Reaktionsprodukte, die Kinetik und die Mechanismen der Interaktion mit Luftschadstoffen untersucht und Proteine aus atmosphĂ€rischen Aerosolproben charakterisiert. Die Hauptpunkte dieser Arbeit können wie folgt zusammengefasst werden: 1.Entwicklung einer Methode zur Charakterisierung von Proteinen aus atmosphĂ€rischen Aerosolproben unter Anwendung eines metaproteomischen Ansatzes basierend auf Massenspektrometrie. Die Extraktionsmethode wurde optimiert, um die Interaktion zwischen Proteinen und Glasfaserfiltern zu ĂŒberwinden und somit eine hohe ProteinrĂŒckgewinnung zu erreichen. Zur Entfernung von Matrixkomponenten wurde die GrĂ¶ĂŸenausschlusschromatographie (SEC) verwendet. Zur Auftrennung der Proteine anhand ihrer molekularen GrĂ¶ĂŸe, wurde Natriumdodecylsulfat-Polyacrylamidgel-elektrophorese (SDS-PAGE) angewendet. Anschließend wurden die Proteine im Gel verdaut und die entstandenen Peptide mit Hilfe eines hybriden Quadrupol-Orbitrap-Massenspektrometers und Datenbanksuchfunktionen analysiert. Die entwickelte Methode konnte erfolgreich auf die Identifikation von Proteinen aus in Mitteleuropa (Mainz, Deutschland) gesammelten Filterproben angewendet werden. Zudem bietet sie ein Werkzeug fĂŒr weitere Studien ĂŒber die rĂ€umliche und zeitliche VariabilitĂ€t von Biopartikeln und Allergenen in atmosphĂ€rischen Aerosolproben. 2.AufklĂ€rung des Mechanismus und der Kinetik der Nitrierung und Oligomerisierung von Tyrosinresten in Proteinen durch Ozon (O3) und Stickstoffdioxid (NO2). HierfĂŒr wurden Proteine entweder auf die Wand eines Durchflussrohres aufgetragen oder in Lösung gebracht und O3 oder einer Mischung aus O3 und NO2 ausgesetzt. Rinderserumalbumin (BSA) diente hierbei als Modellprotein. Des Weiteren wurde eine effiziente Methode mit SEC-HPLC-DAD entwickelt, welche die simultane Bestimmung von einfachen, zweifachen, dreifachen und höheren Proteinoligomeren sowie ihrer individuellen Nitrierungsgrade (NDs) ermöglicht. FĂŒr die Reaktion von BSA mit O3 wurde die Bildung von Proteindimeren, -trimeren und höheren Oligomeren beobachtet. Die Ergebnisse von SDS-PAGE und Fluoreszenzanalyse zeigen, dass die Proteinquervernetzung auf die Bildung von intramolekularen Dityrosinen zurĂŒckzufĂŒhren ist. FĂŒr die Reaktion von BSA mit O3 und NO2 wurden mehr Tyrosinreste gefunden, die dem Nitrierungsweg folgen, als die den Weg der Oligomerisierung gehen. AbhĂ€ngig von den Reaktionsbedingungen lag der Anteil an Oligomeren im Bereich von 2.5-25% und die NDs bei 0.5-7%. Das Ausmaß der Nitrierung und Oligomerisierung von Proteinen ist stark abhĂ€ngig von ihrem Aggregatzustand (glasartig, halbfest, flĂŒssig) und damit vom Diffusionsvermögen der Oxidationsmittel und ProteinmolekĂŒle, das sich mit der relativen Luftfeuchtigkeit verĂ€ndert. Die experimentellen Ergebnisse können unter Zuhilfenahme eines kinetischen Mehrschichtenmodells der OberflĂ€chen- und Kernmaterialchemie beschrieben und erklĂ€rt werden. Die Reaktionsraten der beiden Prozesse reagierten feinfĂŒhlig auf einen Anstieg der O3-Konzentration, waren aber nahezu unempfindlich gegenĂŒber VerĂ€nderungen in der umgebenden NO2-Konzentration. 3.Freisetzung von freien AminosĂ€uren als Folge der Oxidation von Peptiden und Proteinen durch Hydroxylradikale. Die Oxidationsprodukte von Proteinen und Peptiden, die durch Hydroxylradikale aus der Fenton-Reaktion entstanden sind, wurden mittels HPLC-MS/MS und HPLC-DAD-FLD analysiert. Freie AminosĂ€uren wurden durch HPLC-MS/MS-Analyse als Produkte identifiziert. DarĂŒber hinaus wurde eine seitenselektive Bildung von freien AminosĂ€uren beobachtet, die durch einen Reaktionsweg erklĂ€rt werden könnte, der Stickstoff-zentrierte Radikale beinhaltet. Die molaren Ausbeuten fĂŒr Oxidationsreaktionen waren wesentlich grĂ¶ĂŸer fĂŒr Glycin (Gly, ~32‐55 % fĂŒr BSA, ~10‐21 % fĂŒr Ovalbumin (OVA)) als fĂŒr andere identifizierte AminosĂ€uren (z.B. Alanin, AsparaginsĂ€ure, und Asparagin; ~5‐12 % fĂŒr BSA, ~4‐6 % fĂŒr OVA). Bei der Oxidation von Tripeptiden mit Gly in C-terminaler, zentraler oder N-terminaler Position wurde Gly bevorzugt freigesetzt, wenn es sich zuvor am C-terminalen Ende befand. Die in dieser Arbeit entwickelten Methoden, sowie die untersuchten Reaktionsprodukte, Mechanismen und Kinetik bieten eine Grundlage fĂŒr weitere Untersuchungen der atmosphĂ€rischen Proteinchemie mit Luftschadstoffen. Sie sollen helfen, die Beziehungen zwischen durch Luftschadstoffe modifizierten Aeroallergenen und ihrer verstĂ€rkten AllergenitĂ€t besser zu verstehen
    corecore