11 research outputs found

    Smart Grid in China, EU, and the US: State of Implementation

    Get PDF
    Depletion of fossil fuel deposits is the main current issue related to the world's power generation. Renewable energy sources integrated with energy efficiency represent an effective solution. The electrification of end-use coupled with renewable power generation integration is considered as an important tool to achieve these tasks. However, the current electric power system does not currently have the suitable features to allow this change. Therefore, in the future, it has to allow two-way direction power flows, communication, and automated controls to fully manage the system and customers. The resulting system is defined as the smart grid. This article analyses the smart grid state of play within China, the US, and the EU, assessing the completion state of each smart grid technology and integrated asset. The analysis related to these countries presented here shows that the smart grid overall state of play in China, the US, and the EU are equal to 18%, 15%, and 13%, respectively, unveiling the need related to further efforts and investments in these countries for the full smart grid development

    Ocean Wind Energy Technologies in Modern Electric Networks: Opportunity and Challenges

    Get PDF
    Wind energy is one of the most important sources of energy in the world. In recent decades, wind as one of the massive marine energy resources in the ocean to produce electricity has been used. This chapter introduces a comprehensive overview of the efficient ocean wind energy technologies, and the global wind energies in both offshore and onshore sides are discussed. Also, the classification of global ocean wind energy resources is presented. Moreover, different components of a wind farm offshore as well as the technologies used in them are investigated. Possible layouts regarding the foundation of an offshore wind turbine, floating offshore, as well as the operation of wind farms in the shallow and deep location of the ocean are studied. Finally, the offshore wind power plant challenges are described

    Review of batteries reliability in electric vehicle and E-mobility applications

    No full text
    Electric mobility (E-Mobility) has expedited transportation decarbonization worldwide. Lithium-ion batteries (LIBs) could help transition gasoline-powered cars to electric vehicles (EVs). However, several factors affect Li-ion battery technology in EVs’ short-term and long-term reliability. Li-ion batteries’ sensitivity and non-linearity may make traditional dependability models unreliable. This state-of-the-art article investigated power fade (PF) and capacity fade (CF) as leading reliability indicators that help analyze battery reliability under various ambient temperatures and discharge C-rates. Trends in LIBs applications for EVs and E-mobility are discussed. Furthermore, qualitative analysis and risk management were conducted to identify the reliable and unreliable zones of battery operation based on these indicators and the degradation circumstances implemented in recent publications. Besides, the influence of degrading circumstances on reliability indicators over the battery’s lifespan, such as a high C-rate at a low temperature throughout the battery's lifetime, has been presented in a comprehensive investigated case study in this work

    A multi-objective optimization problem for optimal site selection of wind turbines for reduce losses and improve voltage profile of distribution grids

    Get PDF
    In this paper, the optimal site and size selection of wind turbines (WTs) is presented considering the maximum allowable capacity constraint with the objective of loss reduction and voltage profile improvement of distribution grids based on particle swarm optimization (PSO as a multi-objective problem using weighted coefficients method. The optimal site, size, and power factor of the WTs are determined using PSO. The proposed method is implemented on 84- and 32-bus standard grids. In this study, PSO algorithm is applied to determine the size, site, and power factor of WTs considering their maximum size constraint (with constraint, variant size) and also not considering their maximum size constraint (without constraint, constant size). The simulation results showed that the PSO is effective to find the site, size, and power factor of WTs optimally in the single and multi-objective problem. The results of this method showed that the power loss is reduced more and voltage profile improved more considering WTs maximum allowable size versus not considering this constraint. Additionally, the multi-objective results showed that there is a compromise between the objectives in the multi-objective WTs site selection and the multi-objective problem solution is a more realistic and accurate approach in comparison with the single-objective problem solution

    Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems

    No full text
    In the last two decades, emerging use of renewable and distributed energy sources in electricity grid has created new challenges for the utility regarding the power quality, voltage stabilization and efficient energy utilization. Power electronic converters are extensively utilized to interface the emerging energy systems (without and with energy storage) and smart buildings with the transmission and distribution systems. Flexible ac transmission systems (FACTSs) and voltage-source converters, with smart dynamic controllers, are emerging as a stabilization and power filtering equipment to improve the power quality. Also, distributed FACTSs play an important role in improving the power factor, energy utilization, enhancing the power quality, and ensuring efficient energy utilization and energy management in smart grids with renewable energy sources. This paper presents a literature survey of FACTS technology tools and applications for power quality and efficient renewable energy system utilization

    Understanding Voltage Behavior of Lithium-Ion Batteries in Electric Vehicles Applications

    No full text
    Electric vehicle (EV) markets have evolved. In this regard, rechargeable batteries such as lithium-ion (Li-ion) batteries become critical in EV applications. However, the nonlinear features of Li-ion batteries make their performance over their lifetime, reliability, and control more difficult. In this regard, the battery management system (BMS) is crucial for monitoring, handling, and improving the lifespan and reliability of this type of battery from cell to pack levels, particularly in EV applications. Accordingly, the BMS should control and monitor the voltage, current, and temperature of the battery system during the lifespan of the battery. In this article, the BMS definition, state of health (SoH) and state of charge (SoC) methods, and battery fault detection methods were investigated as crucial aspects of the control strategy of Li-ion batteries for assessing and improving the reliability of the system. Moreover, for a clear understanding of the voltage behavior of the battery, the open-circuit voltage (OCV) at three ambient temperatures, 10 °C, 25 °C, and 45 °C, and three different SoC levels, 80%, 50%, and 20%, were investigated. The results obtained showed that altering the ambient temperature impacts the OCV variations of the battery. For instance, by increasing the temperature, the voltage fluctuation at 45 °C at low SoC of 50% and 20% was more significant than in the other conditions. In contrast, the rate of the OCV at different SoC in low and high temperatures was more stable

    Dual Enhancement of Power System Monitoring: Improved Probabilistic Multi-Stage PMU Placement with an Increased Search Space & Mathematical Linear Expansion to Consider Zero-Injection Bus

    No full text
    This paper presents a mathematical linear expansion model for the probabilistic Multistage Phasor Measurement Unit (PMU) Placement (MPP) in which zero-injection buses (ZIBs), as well as communication channel limitations, are taken into consideration. From the linearization perspective, presenting a model formulizing the probabilistic concept of observability while modelling the ZIB is of great significance, and has been done in this paper for the first time. More importantly, the proposed probabilistic MPP utilizes a technique disregarding the prevalent subsidiary optimizations for each planning stage. Although this technique, in turn, increases the problem complexity with manifold variables, it guarantees the global optimal solution in a wider and thorough search space; while in the prevalent methods, some parts of the search space might be missed. Furthermore, the proposed model indicates more realistic aspects of the MPP where system operators are allowed to follow their intention about the importance of buses such as strategic ones based on monitoring the priority principles. In addition, the model is capable of considering the network topology changes due to long-term expansions over the planning horizon. Finally, in order to demonstrate the effectiveness of the proposed formulation, the model is conducted on the IEEE 57-bus standard test system and the large scale 2383-bus Polish power system

    Understanding Voltage Behavior of Lithium-Ion Batteries in Electric Vehicles Applications

    No full text
    Electric vehicle (EV) markets have evolved. In this regard, rechargeable batteries such as lithium-ion (Li-ion) batteries become critical in EV applications. However, the nonlinear features of Li-ion batteries make their performance over their lifetime, reliability, and control more difficult. In this regard, the battery management system (BMS) is crucial for monitoring, handling, and improving the lifespan and reliability of this type of battery from cell to pack levels, particularly in EV applications. Accordingly, the BMS should control and monitor the voltage, current, and temperature of the battery system during the lifespan of the battery. In this article, the BMS definition, state of health (SoH) and state of charge (SoC) methods, and battery fault detection methods were investigated as crucial aspects of the control strategy of Li-ion batteries for assessing and improving the reliability of the system. Moreover, for a clear understanding of the voltage behavior of the battery, the open-circuit voltage (OCV) at three ambient temperatures, 10 °C, 25 °C, and 45 °C, and three different SoC levels, 80%, 50%, and 20%, were investigated. The results obtained showed that altering the ambient temperature impacts the OCV variations of the battery. For instance, by increasing the temperature, the voltage fluctuation at 45 °C at low SoC of 50% and 20% was more significant than in the other conditions. In contrast, the rate of the OCV at different SoC in low and high temperatures was more stable
    corecore