60 research outputs found

    CENTRIN2 Interacts with the Arabidopsis Homolog of the Human XPC Protein (AtRAD4) and Contributes to Efficient Synthesis-dependent Repair of Bulky DNA Lesions

    Get PDF
    Arabidopsis thaliana CENTRIN2 (AtCEN2) has been shown to modulate Nucleotide Excision Repair (NER) and Homologous Recombination (HR). The present study provides evidence that AtCEN2 interacts with the Arabidopsis homolog of human XPC, AtRAD4 and that the distal EF-hand Ca2+ binding domain is essential for this interaction. In addition, the synthesis-dependent repair efficiency of bulky DNA lesions was enhanced in cell extracts prepared from Arabidopsis plants overexpressing the full length AtCEN2 but not in those overexpressing a truncated AtCEN2 form, suggesting a role for the distal EF-hand Ca2+ binding domain in the early step of the NER process. Upon UV-C treatment the AtCEN2 protein was shown to be increased in concentration and to be localised in the nucleus rapidly. Taken together these data suggest that AtCEN2 is a part of the AtRAD4 recognition complex and that this interaction is required for efficient NER. In addition, NER and HR appear to be differentially modulated upon exposure of plants to DNA damaging agents. This suggests in plants, that processing of bulky DNA lesions highly depends on the excision repair efficiency, especially the recognition step, thus influencing the recombinational repair pathwa

    The phantom midge menace: Migratory Chaoborus larvae maintain poor ecosystem state in eutrophic inland waters

    Get PDF
    Chaoborus spp. (phantom midge) are prevalent in eutrophic lakes with methane-rich, oxygen depleted hypolimnion and sediments, and the methane-poor, oxygen-rich epilimnion. Using a combination of experiments and system modelling, we demonstrated that the larvae’s burrowing activities in and out of the sediment perturbed the sediment and reintroduced sequestered phosphorus into the overlying water, thereby exacerbating internal nutrient loading in the water column. Fluxes of sediment methane and other reduced solutes enhanced by the larval bioturbation sustain the hypoxic/anoxic condition below the thermocline. Migrating larvae also directly transported methane in their gas vesicles from the deep water and release it in the surface water, potentially contributing to methane emission to air. As nutrient pollution and climate warming persist or worsen in the coming decades, proliferation of Chaoborus could intensify this positive feedback loop and delay lake recovery

    Impact of respirator versus surgical masks on SARS-CoV-2 acquisition in healthcare workers: a prospective multicentre cohort.

    Get PDF
    BACKGROUND There is insufficient evidence regarding the role of respirators in the prevention of SARS-CoV-2 infection. We analysed the impact of filtering facepiece class 2 (FFP2) versus surgical masks on the risk of SARS-CoV-2 acquisition among Swiss healthcare workers (HCW). METHODS Our prospective multicentre cohort enrolled HCW from June to August 2020. Participants were asked about COVID-19 risk exposures/behaviours, including preferentially worn mask type when caring for COVID-19 patients outside of aerosol-generating procedures. The impact of FFP2 on (1) self-reported SARS-CoV-2-positive nasopharyngeal PCR/rapid antigen tests captured during weekly surveys, and (2) SARS-CoV-2 seroconversion between baseline and January/February 2021 was assessed. RESULTS We enrolled 3259 participants from nine healthcare institutions, whereof 716 (22%) preferentially used FFP2. Among these, 81/716 (11%) reported a SARS-CoV-2-positive swab, compared to 352/2543 (14%) surgical mask users; seroconversion was documented in 85/656 (13%) FFP2 and 426/2255 (19%) surgical mask users. Adjusted for baseline characteristics, COVID-19 exposure, and risk behaviour, FFP2 use was non-significantly associated with decreased risk for SARS-CoV-2-positive swab (adjusted hazard ratio [aHR] 0.8, 95% CI 0.6-1.0) and seroconversion (adjusted odds ratio [aOR] 0.7, 95% CI 0.5-1.0); household exposure was the strongest risk factor (aHR 10.1, 95% CI 7.5-13.5; aOR 5.0, 95% CI 3.9-6.5). In subgroup analysis, FFP2 use was clearly protective among those with frequent (> 20 patients) COVID-19 exposure (aHR 0.7 for positive swab, 95% CI 0.5-0.8; aOR 0.6 for seroconversion, 95% CI 0.4-1.0). CONCLUSIONS Respirators compared to surgical masks may convey additional protection from SARS-CoV-2 for HCW with frequent exposure to COVID-19 patients

    Risk and symptoms of COVID-19 in health professionals according to baseline immune status and booster vaccination during the Delta and Omicron waves in Switzerland-A multicentre cohort study.

    Get PDF
    BACKGROUND Knowledge about protection conferred by previous Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and/or vaccination against emerging viral variants allows clinicians, epidemiologists, and health authorities to predict and reduce the future Coronavirus Disease 2019 (COVID-19) burden. We investigated the risk and symptoms of SARS-CoV-2 (re)infection and vaccine breakthrough infection during the Delta and Omicron waves, depending on baseline immune status and subsequent vaccinations. METHODS AND FINDINGS In this prospective, multicentre cohort performed between August 2020 and March 2022, we recruited hospital employees from ten acute/nonacute healthcare networks in Eastern/Northern Switzerland. We determined immune status in September 2021 based on serology and previous SARS-CoV-2 infections/vaccinations: Group N (no immunity); Group V (twice vaccinated, uninfected); Group I (infected, unvaccinated); Group H (hybrid: infected and ≥1 vaccination). Date and symptoms of (re)infections and subsequent (booster) vaccinations were recorded until March 2022. We compared the time to positive SARS-CoV-2 swab and number of symptoms according to immune status, viral variant (i.e., Delta-dominant before December 27, 2021; Omicron-dominant on/after this date), and subsequent vaccinations, adjusting for exposure/behavior variables. Among 2,595 participants (median follow-up 171 days), we observed 764 (29%) (re)infections, thereof 591 during the Omicron period. Compared to group N, the hazard ratio (HR) for (re)infection was 0.33 (95% confidence interval [CI] 0.22 to 0.50, p < 0.001) for V, 0.25 (95% CI 0.11 to 0.57, p = 0.001) for I, and 0.04 (95% CI 0.02 to 0.10, p < 0.001) for H in the Delta period. HRs substantially increased during the Omicron period for all groups; in multivariable analyses, only belonging to group H was associated with protection (adjusted HR [aHR] 0.52, 95% CI 0.35 to 0.77, p = 0.001); booster vaccination was associated with reduction of breakthrough infection risk in groups V (aHR 0.68, 95% CI 0.54 to 0.85, p = 0.001) and H (aHR 0.67, 95% CI 0.45 to 1.00, p = 0.048), largely observed in the early Omicron period. Group H (versus N, risk ratio (RR) 0.80, 95% CI 0.66 to 0.97, p = 0.021) and participants with booster vaccination (versus nonboosted, RR 0.79, 95% CI 0.71 to 0.88, p < 0.001) reported less symptoms during infection. Important limitations are that SARS-CoV-2 swab results were self-reported and that results on viral variants were inferred from the predominating strain circulating in the community at that time, rather than sequencing. CONCLUSIONS Our data suggest that hybrid immunity and booster vaccination are associated with a reduced risk and reduced symptom number of SARS-CoV-2 infection during Delta- and Omicron-dominant periods. For previously noninfected individuals, booster vaccination might reduce the risk of symptomatic Omicron infection, although this benefit seems to wane over time

    Clinical symptoms of SARS-CoV-2 breakthrough infection during the Omicron period in relation to baseline immune status and booster vaccination-A prospective multicentre cohort of health professionals (SURPRISE study).

    Get PDF
    The effects of different types of pre-existing immunity on the frequency of clinical symptoms caused by the SARS-CoV-2 breakthrough infection were prospectively assessed in healthcare workers during the Omicron period. Among 518 participants, hybrid immunity was associated with symptom reduction for dizziness, muscle or limb pain and headache as compared to vaccination only. Moreover, the frequencies of dizziness, cough and muscle or limb pain were lower in participants who had received a booster vaccine dose. Thus, hybrid immunity appeared to be superior in preventing specific symptoms during breakthrough infection compared to vaccination alone. A booster vaccine dose conferred additional symptom reduction

    Nanoscale Metallic Iron for Environmental Remediation: Prospects and Limitations

    Get PDF
    The amendment of the subsurface with nanoscale metallic iron particles (nano-Fe0) has been discussed in the literature as an efficient in situ technology for groundwater remediation. However, the introduction of this technology was controversial and its efficiency has never been univocally established. This unsatisfying situation has motivated this communication whose objective was a comprehensive discussion of the intrinsic reactivity of nano-Fe0 based on the contemporary knowledge on the mechanism of contaminant removal by Fe0 and a mathematical model. It is showed that due to limitations of the mass transfer of nano-Fe0 to contaminants, available concepts cannot explain the success of nano-Fe0 injection for in situ groundwater remediation. It is recommended to test the possibility of introducing nano-Fe0 to initiate the formation of roll-fronts which propagation would induce the reductive transformation of both dissolved and adsorbed contaminants. Within a roll-front, FeII from nano-Fe0 is the reducing agent for contaminants. FeII is recycled by biotic or abiotic FeIII reduction. While the roll-front concept could explain the success of already implemented reaction zones, more research is needed for a science-based recommendation of nano- Fe0 for subsurface treatment by roll-front

    Experimentally Simulated Global Warming and Nitrogen Enrichment Effects on Microbial Litter Decomposers in a Marshâ–ż

    No full text
    Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had an influence on bacterial community structure, with the apparent number of dominant genotypes increasing from spring to summer. Microbial respiration was unaffected by any treatment, and nitrogen enrichment had no clear effect on any of the microbial parameters considered. Overall, these results suggest that microbes associated with decomposing plant litter in nutrient-rich freshwater marshes are resistant to extra nitrogen supplies but are likely to respond to temperature increases projected for this century
    • …
    corecore