17,503 research outputs found
Anomalous optical absorption in a random system with scale-free disorder
We report on an anomalous behavior of the absorption spectrum in a
one-dimensional lattice with long-range-correlated diagonal disorder with a
power-like spectrum in the form S(k) ~ 1/k^A. These type of correlations give
rise to a phase of extended states at the band center, provided A is larger
than a critical value A_c. We show that for A < A_c the absorption spectrum is
single-peaked, while an additional peak arises when A > A_c, signalling the
occurrence of the Anderson transition. The peak is located slightly below the
low-energy mobility edge, providing a unique spectroscopic tool to monitor the
latter. We present qualitative arguments explaining this anomaly.Comment: 4 pages, 4 postscript figures, uses revtex
Quantum mechanical analysis of the elastic propagation of electrons in the Au/Si system: application to Ballistic Electron Emission Microscopy
We present a Green's function approach based on a LCAO scheme to compute the
elastic propagation of electrons injected from a STM tip into a metallic film.
The obtained 2D current distribution in real and reciprocal space furnish a
good representation of the elastic component of Ballistic Electron Emission
Microscopy (BEEM) currents. Since this component accurately approximates the
total current in the near threshold region, this procedure allows --in contrast
to prior analyses-- to take into account effects of the metal band structure in
the modeling of these experiments. The Au band structure, and in particular its
gaps appearing in the [111] and [100] directions provides a good explanation
for the previously irreconcilable results of nanometric resolution and
similarity of BEEM spectra on both Au/Si(111) and Au/Si(100).Comment: 12 pages, 9 postscript figures, revte
Mechanisms of induction of regulatory B cells in the tumour microenvironment and their contribution to immunosuppression and pro-tumour responses
The presence of tumour-infiltrating immune cells was originally associated with the induction of anti-tumour responses and good a prognosis. A more refined characterization of the tumour microenvironment has challenged this original idea and evidence now exists pointing to a critical role for immune cells in the modulation of anti-tumour responses and the induction of a tolerant pro-tumour environment. The coordinated action of diverse immunosuppressive populations, both innate and adaptive, shapes a variety of pro-tumour responses leading to tumour progression and metastasis. Regulatory B cells have emerged as critical modulators and suppressors of anti-tumour responses. As reported in autoimmunity and infection studies, Bregs are a heterogeneous population with diverse phenotypes and different mechanisms of action. Here we review recent studies on Bregs from animal models and patients, covering a variety of types of cancer. We describe the heterogeneity of Bregs, the cellular interactions they make with other immune cells and the tumour itself, and their mechanism of suppression that enables tumour escape. We also discuss the potential therapeutic tools that may inhibit Bregs function and promote anti-tumour responses
Renormalization of the baryon axial vector current in large-N_c chiral perturbation theory
The baryon axial vector current is computed at one-loop order in heavy baryon
chiral perturbation theory in the large-N_c limit, where N_c is the number of
colors. Loop graphs with octet and decuplet intermediate states cancel to
various orders in N_c as a consequence of the large-N_c spin-flavor symmetry of
QCD baryons. These cancellations are explicitly shown for the general case of
N_f flavors of light quarks. In particular, a new generic cancellation is
identified in the renormalization of the baryon axial vector current at
one-loop order. A comparison with conventional heavy baryon chiral perturbation
theory is performed at the physical values N_c=3, N_f=3.Comment: REVTex4, 29 pages, 2 figures, 6 tables. Equations (32) and (81)
corrected. Some typos fixed. Results and conclusions remain unchange
Dipole formation at metal/PTCDA interfaces: Role of the Charge Neutrality Level
The formation of a metal/PTCDA (3, 4, 9, 10-perylenetetracarboxylic
dianhydride) interface barrier is analyzed using weak-chemisorption theory. The
electronic structure of the uncoupled PTCDA molecule and of the metal surface
is calculated. Then, the induced density of interface states is obtained as a
function of these two electronic structures and the interaction between both
systems. This induced density of states is found to be large enough (even if
the metal/PTCDA interaction is weak) for the definition of a Charge Neutrality
Level for PTCDA, located 2.45 eV above the highest occupied molecular orbital.
We conclude that the metal/PTCDA interface molecular level alignment is due to
the electrostatic dipole created by the charge transfer between the two solids.Comment: 6 page
Galaxy disks do not need to survive in the L-CDM paradigm: the galaxy merger rate out to z~1.5 from morpho-kinematic data
About two-thirds of present-day, large galaxies are spirals such as the Milky
Way or Andromeda, but the way their thin rotating disks formed remains
uncertain. Observations have revealed that half of their progenitors, six
billion years ago, had peculiar morphologies and/or kinematics, which exclude
them from the Hubble sequence. Major mergers, i.e., fusions between galaxies of
similar mass, are found to be the likeliest driver for such strong
peculiarities. However, thin disks are fragile and easily destroyed by such
violent collisions, which creates a critical tension between the observed
fraction of thin disks and their survival within the L-CDM paradigm. Here we
show that the observed high occurrence of mergers amongst their progenitors is
only apparent and is resolved when using morpho-kinematic observations which
are sensitive to all the phases of the merging process. This provides an
original way of narrowing down observational estimates of the galaxy merger
rate and leads to a perfect match with predictions by state-of-the-art L-CDM
semi-empirical models with no particular fine-tuning needed. These results
imply that half of local thin disks do not survive but are actually rebuilt
after a gas-rich major merger occurring in the past nine billion years, i.e.,
two-thirds of the lifetime of the Universe. This emphasizes the need to study
how thin disks can form in halos with a more active merger history than
previously considered, and to investigate what is the origin of the gas
reservoir from which local disks would reform.Comment: 19 pages, 7 figures, 2 tables. Accepted in ApJ. V2 to match proof
corrections and added reference
Frenkel Excitons in Random Systems With Correlated Gaussian Disorder
Optical absorption spectra of Frenkel excitons in random one-dimensional
systems are presented. Two models of inhomogeneous broadening, arising from a
Gaussian distribution of on-site energies, are considered. In one case the
on-site energies are uncorrelated variables whereas in the second model the
on-site energies are pairwise correlated (dimers). We observe a red shift and a
broadening of the absorption line on increasing the width of the Gaussian
distribution. In the two cases we find that the shift is the same, within our
numerical accuracy, whereas the broadening is larger when dimers are
introduced. The increase of the width of the Gaussian distribution leads to
larger differences between uncorrelated and correlated disordered models. We
suggest that this higher broadening is due to stronger scattering effects from
dimers.Comment: 9 pages, REVTeX 3.0, 3 ps figures. To appear in Physical Review
High-precision analysis of binary stars with planets. I. Searching for condensation temperature trends in the HD 106515 system
We explore the probable chemical signature of planet formation in the
remarkable binary system HD 106515. The A star hosts a massive long-period
planet with 9 MJup detected by radial velocity. We also refine stellar and
planetary parameters by using non-solar-scaled opacities when modeling the
stars. Methods. We carried out a simultaneous determination of stellar
parameters and abundances, by applying for the first time non-solar-scaled
opacities in this binary system, in order to reach the highest possible
precision. Results. The stars A and B in the binary system HD 106515 do not
seem to be depleted in refractory elements, which is different when comparing
the Sun with solar-twins. Then, the terrestrial planet formation would have
been less efficient in the stars of this binary system. Together with HD
80606/7, this is the second binary system which does not seem to present a
(terrestrial) signature of planet formation, and hosting both systems an
eccentric giant planet. This is in agreement with numerical simulations, where
the early dynamical evolution of eccentric giant planets clear out most of the
possible terrestrial planets in the inner zone. We refined the stellar mass,
radius and age for both stars and found a notable difference of 78% in R
compared to previous works. We also refined the planet mass to mp sini = 9.08
+/- 0.20 MJup, which differs by 6% compared with literature. In addition, we
showed that the non-solar-scaled solution is not compatible with the classical
solar-scaled method, and some abundance differences are comparable to NLTE or
GCE effects specially when using the Sun as reference. Then, we encourage the
use of non-solar-scaled opacities in high-precision studies such as the
detection of Tc trends.[abridged]Comment: 9 pages, 10 figures, A&A accepted. arXiv admin note: text overlap
with arXiv:1507.0812
Ab initio study of transport properties in defected carbon nanotubes: an O(N) approach
A combination of ab initio simulations and linear-scaling Green's functions
techniques is used to analyze the transport properties of long (up to one
micron) carbon nanotubes with realistic disorder. The energetics and the
influence of single defects (mono- and di-vacancies) on the electronic and
transport properties of single-walled armchair carbon nanotubes are analyzed as
a function of the tube diameter by means of the local orbital first-principles
Fireball code. Efficient O(N) Green's functions techniques framed within the
Landauer-Buttiker formalism allow a statistical study of the nanotube
conductance averaged over a large sample of defected tubes and thus extraction
of the nanotubes localization length. Both the cases of zero and room
temperature are addressed.Comment: 15 pages, 12 figures (submitted to J. Phys: Condens. Matter
- …