37 research outputs found

    An Overview of the Microgravity Science Glovebox (MSG) Facility, and the Gravity-Dependent Phenomena Research Performed in the MSG on the International Space Station (ISS)

    Get PDF
    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation, The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120, 28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion, reaction control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG and an overview of investigations planning to operate in the MSG. In addition, this paper will address possible changes to the MSG utilization process that will be brought about by the transition to ISS as a National Laboratory

    An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    No full text
    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG has been operating on the ISS since July 2002 and is currently located in the Columbus Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a workbench type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. In fact, the MSG has been used for over 5000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technologies. MSG is an ideal platform for science investigations and research required to advance the technology readiness levels (TRLs) applicable to the Constellation Program. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of future investigations currently planned for operation in the MSG, and potential applications of MSG investigations that can provide useful data to the Constellation Program. In addition, this paper will address the role of the MSG facility in the ISS National Lab

    La familia como espacio educativo para la orientación

    No full text
    Seminario de graduación (licenciatura en ciencias de la educación con énfasis en orientación)UCR::Vicerrectoría de Docencia::Ciencias Sociales::Facultad de Educación::Escuela de Orientación y Educación Especia

    Desarrollo de una aplicación móvil para el monitoreo de la fenometría vegetativa del maíz amarillo, en la sierra central ecuatoriana

    No full text
    En este trabajo se presenta una aplicación móvil en la que se realizan observaciones de los parámetros de la fenometría vegetativa del maíz, es decir, valorar cuantitativamente el crecimiento de la planta teniendo presente las medidas de longitud y diámetro del tallo. Para el desarrollo de la aplicación móvil se emplea la metodología Mobile-D, la medición de la longitud y el diámetro del tallo en imágenes se basa en la colocación de un objeto de referencia junto a la planta y en el uso de técnicas del área del procesamiento digital de imágenes a través de la librería OpenCV. La precisión de la medición de la longitud y el diámetro se evalúa utilizando el estimador RMSE (error cuadrático medio) en un banco de cincuenta imágenes obteniendo una desviación estándar de la varianza de 5.41 milímetros para la longitud y de 5.27 milímetros para el diámetro

    Altered inflammatory, oxidative, and metabolic responses to exercise in pediatric obesity and type 1 diabetes.

    No full text
    Obesity (Ob) and type 1 diabetes (T1DM) are associated with increased inflammation and oxidative stress, which are major pathogenetic pathways toward higher cardiovascular risks. Although long-term exercise protects against systemic inflammation and oxidation, acute exercise actually exerts pro-inflammatory and oxidative effects, prompting the necessity for better defining these molecular processes in at-risk patients; in particular, very little is known regarding obese and T1DM children. We therefore examined key inflammatory and oxidative stress variables during exercise in 138 peripubertal children (47 Ob, 12.7 ± 0.4 yr, 22 F, BMI% 97.6 ± 0.2; 49 T1DM, 13.9 ± 0.2 yr, 20 F, body mass index% [BMI] 63.0 ± 3.6; 42 healthy, CL, 13.5 ± 0.5 yr, 24 F, BMI% 57.0 ± 3.6), who performed 10 bouts of 2-min cycling ~80% VO(2max) , separated by 1-min rest intervals. Blood samples were drawn at baseline and peak exercise. Ob displayed elevated baseline interleukin-6 (IL-6, 2.1 ± 0.2 pg/mL, p < 0.005) vs. CL (1.5 ± 0.3), whereas T1DM displayed the greatest maximum exercise-induced change in IL-6 (1.2 ± 0.3) than in both Ob (0.7 ± 0.1, p < 0.001) and CL (0.6 ± 0.1, p < 0.0167). Myeloperoxidase (MPO) was elevated in T1DM (143 ± 30 ng/mL, p < 0.0167) vs. CL (89 ± 10) and Ob (76 ± 6), whereas increases in exercise only occurred in Ob and CL. Disparate baseline and exercise responses were also observed for 8-hydroxy-2'-deoxyguanosine, glutathione, and F(2) -isoprostane. This data show distinct patterns of dysregulation in baseline and adaptive immunologic and oxidative responses to exercise in Ob and T1DM. A full understanding of these alterations is required so that developing exercise regimens aimed at maximizing health benefits for specific dysmetabolic states can be achieved based on complete scientific characterization rather than empirical implementation
    corecore