18 research outputs found

    Incidence of Lyme disease in the United Kingdom and association with fatigue: A population-based, historical cohort study.

    Get PDF
    BACKGROUND: Estimations of Lyme disease incidence rates in the United Kingdom vary. There is evidence that this disease is associated with fatigue in its early stage but reports are contradictory as far as long-term fatigue is concerned. METHODS AND FINDINGS: A population-based historical cohort study was conducted on patients treated in general practices contributing to IQVIA Medical Research Data: 2,130 patients with a first diagnosis of Lyme disease between 2000 and 2018 and 8,510 randomly-sampled patients matched by age, sex, and general practice, followed-up for a median time of 3 years and 8 months. Main outcome measure was time to consultation for (1) any fatigue-related symptoms or diagnosis; or (2) myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Adjusted hazard ratios (HRs) were estimated from Cox models. Average incidence rate for Lyme disease across the UK was 5.18 per 100,000 person-years, increasing from 2.55 in 2000 to 9.33 in 2018. In total, 929 events of any types of fatigue were observed, leading to an incidence rate of 307.90 per 10,000 person-years in the Lyme cohort (282 events) and 165.60 in the comparator cohort (647 events). Effect of Lyme disease on any subsequent fatigue varied by index season: adjusted HRs were the highest in autumn and winter with 3.14 (95%CI: 1.92-5.13) and 2.23 (1.21-4.11), respectively. For ME/CFS, 17 events were observed in total. Incidence rates were 11.76 per 10,000 person-years in Lyme patients (12 events) and 1.20 in comparators (5 events), corresponding to an adjusted HR of 16.95 (5.17-55.60). Effects were attenuated 6 months after diagnosis but still clearly visible. CONCLUSIONS: UK primary care records provided strong evidence that Lyme disease was associated with subsequent fatigue and ME/CFS. Albeit weaker on the long-term, these effects persisted beyond 6 months, suggesting patients and healthcare providers should remain alert to fatigue symptoms months to years following Lyme disease diagnosis

    PTCH1+/− Dermal Fibroblasts Isolated from Healthy Skin of Gorlin Syndrome Patients Exhibit Features of Carcinoma Associated Fibroblasts

    Get PDF
    Gorlin's or nevoid basal cell carcinoma syndrome (NBCCS) causes predisposition to basal cell carcinoma (BCC), the commonest cancer in adult human. Mutations in the tumor suppressor gene PTCH1 are responsible for this autosomal dominant syndrome. In NBCCS patients, as in the general population, ultraviolet exposure is a major risk factor for BCC development. However these patients also develop BCCs in sun-protected areas of the skin, suggesting the existence of other mechanisms for BCC predisposition in NBCCS patients. As increasing evidence supports the idea that the stroma influences carcinoma development, we hypothesized that NBCCS fibroblasts could facilitate BCC occurence of the patients. WT (n = 3) and NBCCS fibroblasts bearing either nonsense (n = 3) or missense (n = 3) PTCH1 mutations were cultured in dermal equivalents made of a collagen matrix and their transcriptomes were compared by whole genome microarray analyses. Strikingly, NBCCS fibroblasts over-expressed mRNAs encoding pro-tumoral factors such as Matrix Metalloproteinases 1 and 3 and tenascin C. They also over-expressed mRNA of pro-proliferative diffusible factors such as fibroblast growth factor 7 and the stromal cell-derived factor 1 alpha, known for its expression in carcinoma associated fibroblasts. These data indicate that the PTCH1+/− genotype of healthy NBCCS fibroblasts results in phenotypic traits highly reminiscent of those of BCC associated fibroblasts, a clue to the yet mysterious proneness to non photo-exposed BCCs in NBCCS patients

    Diagnosis codelist - Lyme disease codes

    No full text
    Read codes for Lyme disease. These support a publication titled "Incidence of Lyme disease in the United Kingdom and association with fatigue: a population-based, historical cohort study"

    Diagnosis/symptom codelist - fatigue codes

    No full text
    Read codes for fatigue (including symptoms of fatigue and diagnoses of post-viral fatigue and ME/CFS). These support the paper, "Incidence of Lyme disease in the United Kingdom and association with fatigue: a population-based, historical cohort study"

    Tenascin-C triggers fibrin accumulation by downregulation of tissue plasminogen activator

    Get PDF
    We explored novel functions of tenascin-C by comparing mouse embryonic fibroblasts (MEFs) proficient or deficient in tenascin-C expression. Transcript profiling analysis identified tissue plasminogen activator (tPA) as the most consistently over-expressed gene in all tenascin-C deficient MEFs. This was confirmed by real-time PCR as well as by protein expression analysis. In agreement with these observations, tenascin-C deficient MEFs had an increased capacity to digest fibrin in situ. Consistently, tenascin-C expression in vivo was found to correlate with fibrin deposition in several diseases associated with tenascin-C overexpression such as fibrosis, asthma and cancer. In conclusion, the present study suggests a new role of tenascin-C as a regulator of the fibrinolytic system

    The adhesion modulating properties of tenascin-w

    Get PDF
    Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing

    The Adhesion Modulating Properties of Tenascin-W

    No full text
    <p>Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing.</p

    Basal Cell Carcinoma in Gorlin’s Patients: a Matter of Fibroblasts-Led Protumoral Microenvironment?

    Get PDF
    International audienceBasal cell carcinoma (BCC) is the commonest tumor in human. About 70% sporadic BCCs bear somatic mutations in the PATCHED1 tumor suppressor gene which encodes the receptor for the Sonic Hedgehog morphogen (SHH). PATCHED1 germinal mutations are associated with the dominant Nevoid Basal Cell Carcinoma Syndrome (NBCCS), a major hallmark of which is a high susceptibility to BCCs. Although the vast majority of sporadic BCCs arises exclusively in sun exposed skin areas, 40 to 50% BCCs from NBCCS patients develop in non photo-exposed skin. Since overwhelming evidences indicate that microenvironment may both be modified by- and influence the- epithelial tumor, we hypothesized that NBCCS fibroblasts could contribute to BCCs in NBCCS patients, notably those developing in non photo-exposed skin areas. The functional impact of NBCCS fibroblasts was then assessed in organotypic skin cultures with control keratinocytes. Onset of epidermal differentiation was delayed in the presence of primary NBCCS fibroblasts. Unexpectedly, keratinocyte proliferation was severely reduced and showed high levels of nuclear P53 in both organotypic skin cultures and in fibroblast-led conditioning experiments. However, in spite of increased levels of senescence associated β-galactosidase activity in keratinocytes cultured in the presence of medium conditioned by NBCCS fibroblasts, we failed to observe activation of P16 and P21 and then of bona fide features of senescence. Constitutive extinction of P53 in WT keratinocytes resulted in an invasive phenotype in the presence of NBCCS fibroblasts. Finally, we found that expression of SHH was limited to fibroblasts but was dependent on the presence of keratinocytes. Inhibition of SHH binding resulted in improved epidermal morphogenesis. Altogether, these data suggest that the repertoire of diffusible factors (including SHH) expressed by primary NBCCS fibroblasts generate a stress affecting keratinocytes behavior and epidermal homeostasis. Our findings suggest that defects in dermo/epidermal interactions could contribute to BCC susceptibility in NBCCS patients
    corecore