34 research outputs found

    Differential effects of dual and unihemispheric motor cortex stimulation in older adults

    Get PDF
    Bihemispheric transcranial direct current stimulation (tDCS) is thought to upregulate excitability of the primary motor cortex (M1) using anodal stimulation while concurrently downregulating contralateral M1 using cathodal stimulation. This “dual” tDCS method enhances motor learning in healthy subjects and facilitates motor recovery after stroke. However, its impact on motor system activity and connectivity remains unknown. Therefore, we assessed neural correlates of dual and unihemispheric anodal tDCS effects in 20 healthy older subjects in a randomized, sham-controlled study using a cross-over design. Participants underwent tDCS and simultaneous functional magnetic resonance imaging during a choice reaction time task and at rest. Diffusion tensor imaging (DTI) allowed us to relate potential functional changes to structural parameters. The resting-state analysis demonstrated that, compared with sham, both dual and anodal tDCS decreased connectivity of right hippocampus and M1 (contralateral to the anode position) while increasing connectivity in the left prefrontal cortex. Notably, dual but not anodal tDCS enhanced connectivity of the left dorsal posterior cingulate cortex. Furthermore, dual tDCS yielded stronger activations in bilateral M1 compared with anodal tDCS when participants used either their left or right hand during the motor task. The corresponding tDCS-induced changes in laterality of activations were related to the microstructural status of transcallosal motor fibers. In conclusion, our results suggest that the impact of bihemispheric tDCS cannot be explained by mere add-on effects of anodal and concurrent cathodal stimulation, but rather by complex network modulations involving interhemispheric interactions and areas associated with motor control in the dorsal posterior cingulate cortex

    Effects of brain polarization on reaction times and pinch force in chronic stroke

    Get PDF
    BACKGROUND: Previous studies showed that anodal transcranial DC stimulation (tDCS) applied to the primary motor cortex of the affected hemisphere (M1(affected hemisphere)) after subcortical stroke transiently improves performance of complex tasks that mimic activities of daily living (ADL). It is not known if relatively simpler motor tasks are similarly affected. Here we tested the effects of tDCS on pinch force (PF) and simple reaction time (RT) tasks in patients with chronic stroke in a double-blind cross-over Sham-controlled experimental design. RESULTS: Anodal tDCS shortened reaction times and improved pinch force in the paretic hand relative to Sham stimulation, an effect present in patients with higher impairment. CONCLUSION: tDCS of M1(affected hemisphere )can modulate performance of motor tasks simpler than those previously studied, a finding that could potentially benefit patients with relatively higher impairment levels

    Granulocyte-Colony Stimulating Factor (G-CSF) in Stroke Patients with Concomitant Vascular Disease—A Randomized Controlled Trial

    Get PDF
    G-CSF has been shown in animal models of stroke to promote functional and structural regeneration of the central nervous system. It thus might present a therapy to promote recovery in the chronic stage after stroke.Here, we assessed the safety and tolerability of G-CSF in chronic stroke patients with concomitant vascular disease, and explored efficacy data. 41 patients were studied in a double-blind, randomized approach to either receive 10 days of G-CSF (10 µg/kg body weight/day), or placebo. Main inclusion criteria were an ischemic infarct >4 months prior to inclusion, and white matter hyperintensities on MRI. Primary endpoint was number of adverse events. We also explored changes in hand motor function for activities of daily living, motor and verbal learning, and finger tapping speed, over the course of the study.Adverse events (AEs) were more frequent in the G-CSF group, but were generally graded mild or moderate and from the known side-effect spectrum of G-CSF. Leukocyte count rose after day 2 of G-CSF dosing, reached a maximum on day 8 (mean 42/nl), and returned to baseline 1 week after treatment cessation. No significant effect of treatment was detected for the primary efficacy endpoint, the test of hand motor function.These results demonstrate the feasibility, safety and reasonable tolerability of subcutaneous G-CSF in chronic stroke patients. This study thus provides the basis to explore the efficacy of G-CSF in improving chronic stroke-related deficits.ClinicalTrials.gov NCT00298597

    G-CSF Prevents the Progression of Structural Disintegration of White Matter Tracts in Amyotrophic Lateral Sclerosis: A Pilot Trial

    Get PDF
    Background: The hematopoietic protein Granulocyte-colony stimulating factor (G-CSF) has neuroprotective and regenerative properties. The G-CSF receptor is expressed by motoneurons, and G-CSF protects cultured motoneuronal cells from apoptosis. It therefore appears as an attractive and feasible drug candidate for the treatment of amyotrophic lateral sclerosis (ALS). The current pilot study was performed to determine whether treatment with G-CSF in ALS patients is feasible.Methods: Ten patients with definite ALS were entered into a double-blind, placebo-controlled, randomized trial. Patients received either 10 mu g/kg BW G-CSF or placebo subcutaneously for the first 10 days and from day 20 to 25 of the study. Clinical outcome was assessed by changes in the ALS functional rating scale (ALSFRS), a comprehensive neuropsychological test battery, and by examining hand activities of daily living over the course of the study (100 days). The total number of adverse events (AE) and treatment-related AEs, discontinuation due to treatment-related AEs, laboratory parameters including leukocyte, erythrocyte, and platelet count, as well as vital signs were examined as safety endpoints. Furthermore, we explored potential effects of G-CSF on structural cerebral abnormalities on the basis of voxel-wise statistics of Diffusion Tensor Imaging (DTI), brain volumetry, and voxel-based morphometry.Results: Treatment was well-tolerated. No significant differences were found between groups in clinical tests and brain volumetry from baseline to day 100. However, DTI analysis revealed significant reductions of fractional anisotropy (FA) encompassing diffuse areas of the brain when patients were compared to controls. On longitudinal analysis, the placebo group showed significant greater and more widespread decline in FA than the ALS patients treated with G-CSF.Conclusions: Subcutaneous G-CSF treatment in ALS patients appears as feasible approach. Although exploratory analysis of clinical data showed no significant effect, DTI measurements suggest that the widespread and progressive microstructural neural damage in ALS can be modulated by G-CSF treatment. These findings may carry significant implications for further clinical trials on ALS using growth factors

    Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary

    Get PDF
    Introduction: Recently, growing interest emerged in the enhancement of human potential by means of non-invasive brain stimulation. In particular, anodal transcranial direct current stimulation (atDCS) has been shown to exert beneficial effects on motor and higher cognitive functions. However, the majority of transcranial direct current stimulation (tDCS) studies have assessed effects of single stimulation sessions that are mediated by transient neural modulation. Studies assessing the impact of multiple stimulation sessions on learning that may induce long-lasting behavioural and neural changes are scarce and have not yet been accomplished in the language domain in healthy individuals

    Prosody as an intermediary evolutionary stage between a manual communication system and a fully developed language faculty

    No full text
    Rogalewski A, Breitenstein C, Floel A, Knecht S. Prosody as an intermediary evolutionary stage between a manual communication system and a fully developed language faculty. Behavioral and Brain Sciences. 2004;27(4):521-522.Based on the motor theory of language, which asserts an evolution from gestures along several stages to today's speech and language, we suggest that speech ontogeny may partly reflect speech phylogeny, in that perception of prosodic contours is an intermediary stage between a manual communication system and a fully developed language faculty

    Influence of somatosensory input on interhemispheric interactions in patients with chronic stroke

    No full text
    Ischemia-induced cutaneous anesthesia of the healthy hand in patients with chronic stroke elicits transient improvements of motor performance in the contralateral, paretic hand

    Influence of somatosensory input on interhemispheric interactions in patients with chronic stroke

    No full text
    BACKGROUND: Ischemia-induced cutaneous anesthesia of the healthy hand in patients with chronic stroke elicits transient improvements of motor performance in the contralateral, paretic hand. OBJECTIVE: The present study was designed to investigate one of the possible mechanisms underlying this effect. METHODS: The authors evaluated the effects of transient ischemic cutaneous anesthesia of the healthy hand (target intervention) and healthy foot (control intervention) on transcranial magnetic stimulation-induced interhemispheric inhibition from the contralesional onto the ipsilesional primary motor cortex (M1). Ten subjects with chronic, predominantly subcortical stroke with motor impairment were assessed. RESULTS: Cutaneous anesthesia of the intact hand but not the intact leg resulted in reduction of the inhibitory drive from the contralesional to the ipsilesional M1 both at rest and immediately preceding movements of the paretic hand. Changes in premovement interhemispheric inhibition showed a trend for correlation with improvements in finger-tapping speed in the paretic hand. CONCLUSION: The findings suggest that modulation of interhemispheric inhibitory interactions between the contralesional and ipsilesional M1, either primarily or secondary to intrahemispheric excitability changes in either hemisphere, may contribute to performance improvements with cutaneous anesthesia of the intact hand. The present study provides additional insight into the mechanisms by which rehabilitative interventions focused on training one hand and restraining the other may operate after chronic stroke
    corecore