24 research outputs found

    Deep-Learning based segmentation and quantification in experimental kidney histopathology

    Get PDF
    BACKGROUND: Nephropathologic analyses provide important outcomes-related data in experiments with the animal models that are essential for understanding kidney disease pathophysiology. Precision medicine increases the demand for quantitative, unbiased, reproducible, and efficient histopathologic analyses, which will require novel high-throughput tools. A deep learning technique, the convolutional neural network, is increasingly applied in pathology because of its high performance in tasks like histology segmentation. METHODS: We investigated use of a convolutional neural network architecture for accurate segmentation of periodic acid-Schiff-stained kidney tissue from healthy mice and five murine disease models and from other species used in preclinical research. We trained the convolutional neural network to segment six major renal structures: glomerular tuft, glomerulus including Bowman\u27s capsule, tubules, arteries, arterial lumina, and veins. To achieve high accuracy, we performed a large number of expert-based annotations, 72,722 in total. RESULTS: Multiclass segmentation performance was very high in all disease models. The convolutional neural network allowed high-throughput and large-scale, quantitative and comparative analyses of various models. In disease models, computational feature extraction revealed interstitial expansion, tubular dilation and atrophy, and glomerular size variability. Validation showed a high correlation of findings with current standard morphometric analysis. The convolutional neural network also showed high performance in other species used in research-including rats, pigs, bears, and marmosets-as well as in humans, providing a translational bridge between preclinical and clinical studies. CONCLUSIONS: We developed a deep learning algorithm for accurate multiclass segmentation of digital whole-slide images of periodic acid-Schiff-stained kidneys from various species and renal disease models. This enables reproducible quantitative histopathologic analyses in preclinical models that also might be applicable to clinical studies

    Association of Treatment Effects on Early Change in Urine Protein and Treatment Effects on GFR Slope in IgA Nephropathy:An Individual Participant Meta-analysis

    Get PDF
    Rationale & Objective: An early change in proteinuria is considered a reasonably likely surrogate end point in immunoglobulin A nephropathy (IgAN) and can be used as a basis for accelerated approval of therapies, with verification in a postmarketing confirmatory trial. Glomerular filtration rate (GFR) slope is a recently validated surrogate end point for chronic kidney disease progression and may be considered as the end point used for verification. We undertook a metaanalysis of clinical trials in IgAN to compare treatment effects on change in proteinuria versus change in estimated GFR (eGFR) slope. Study Design: Individual patient-level metaanalysis. Setting & Study Populations: Individual data of 1,037 patients from 12 randomized trials. Selection Criteria for Studies: Randomized trials of IgAN with proteinuria measurements at baseline and 6 (range, 2.5-14) months and at least a further 1 year of follow-up for the clinical outcome. Analytical Approach: For each trial, we estimated the treatment effects on proteinuria and on the eGFR slope, computed as the total slope starting at baseline or the chronic slope starting 3 months after randomization. We used a Bayesian mixed-effects analysis to relate the treatment effects on proteinuria to effects on GFR slope across these studies and developed a prediction model for the treatment effect on the GFR slope based on the effect on proteinuria. Results: Across all studies, treatment effects on proteinuria accurately predicted treatment effects on the total slope at 3 years (median R-2 = 0.88; 95% Bayesian credible interval [BCI], 0.06-1) and on the chronic slope (R-2 = 0.98; 95% BCI, 0.29-1). For future trials, an observed treatment effect of approximately 30% reduction in proteinuria would confer probabilities of at least 90% for nonzero treatment benefits on the total and chronic slopes of eGFR. We obtained similar results for proteinuria at 9 and 12 months and total slope at 2 years. Limitations: Study population restricted to 12 trials of small sample size, leading to wide BCIs. There was heterogeneity among trials with respect to study design and interventions. Conclusions: These results provide new evidence supporting that early reduction in proteinuria can be used as a surrogate end point for studies of chronic kidney disease progression in IgAN

    Acute Treatment Effects on GFR in Randomized Clinical Trials of Kidney Disease Progression

    Get PDF
    Background: Acute changes in GFR can occur after initiation of interventions targeting progression of CKD. These acute changes complicate the interpretation of long-term treatment effects. Methods: To assess the magnitude and consistency of acute effects in randomized clinical trials and explore factors that might affect them, we performed a meta-analysis of 53 randomized clinical trials for CKD progression, enrolling 56,413 participants with at least one estimated GFR measurement by 6 months after randomization. We defined acute treatment effects as the mean difference in GFR slope from baseline to 3 months between randomized groups. We performed univariable and multivariable metaregression to assess the effect of intervention type, disease state, baseline GFR, and albuminuria on the magnitude of acute effects. Results: The mean acute effect across all studies was 20.21 ml/min per 1.73 m2 (95% confidence interval, 20.63 to 0.22) over 3 months, with substantial heterogeneity across interventions (95% coverage interval across studies, 22.50 to 12.08 ml/min per 1.73 m2). We observed negative average acute effects in renin angiotensin system blockade, BP lowering, and sodium-glucose cotransporter 2 inhibitor trials, and positive acute effects in trials of immunosuppressive agents. Larger negative acute effects were observed in trials with a higher mean baseline GFR. Conclusion: The magnitude and consistency of acute GFR effects vary across different interventions, and are larger at higher baseline GFR. Understanding the nature and magnitude of acute effects can help inform the optimal design of randomized clinical trials evaluating disease progression in CKD

    Comprehensive Clinical Nephrology

    No full text
    vii.1286 hal.;ill 21x29 c

    Comprehensive clinical nephrology, 4th ed./ Floege

    No full text
    xxii, 1286 hal.: ill, tab.; 27 cm

    IgA nephropathy:new insights into the role of complement

    No full text
    Glomerular complement deposition is common in IgA nephropathy, and recent genome-wide association studies point to a role of complement factor H and complement factor H-related proteins in disease susceptibility. A number of recent studies have now documented elevated levels of some factor H-related proteins in IgA nephropathy, which might contribute to enhanced complement activation

    Comprehensive Clinical Nephrology

    No full text
    xxii.1286 hlm.' ill.; 27.5 c

    Disruption of CUL3-mediated Ubiquitination Causes Proximal Tubule Injury and Kidney Fibrosis

    Get PDF
    Cullin 3 (CUL3) is part of the ubiquitin proteasomal system and controls several cellular processes critical for normal organ function including the cell cycle, and Keap1/Nrf2 signaling. Kidney tubule-specific Cul3disruption causes tubulointerstitial fibrosis, but little is known about the mechanisms. Therefore, we tested the hypothesis that dysregulation of the cell cycle and Keap1/Nrf2 pathway play a role in initiating the kidney injury upon Cul3 disruption. Cul3 deletion increased expression of cyclin E and p21, associated with uncontrolled proliferation, DNA damage, and apoptosis, all of which preceded proximal tubule injury. The cdk2-cyclin E inhibitor roscovitine did not prevent the effects of Cul3 deletion, but instead exacerbated the kidney injury. Injury occurred despite accumulation and activation of CUL3 substrate Keap1/Nrf2, proposed to be protective in kidney injury. Cul3disruption led to progressive interstitial inflammation, functionally relevant renal fibrosis and death. Finally, we observed reduced CUL3 expression in several AKI and CKD mouse models and in fibrotic human kidney tissue. These data establish CUL3 knockout mice as a novel genetic CKD model in which dysregulation of the cell cycle may play a primary role in initiating tubule injury, and that CUL3 dysregulation could contribute to acute and fibrotic kidney disease

    Extracellular actin impairs glomerular capillary repair in experimental mesangioproliferative glomerulonephritis

    No full text
    Exogenous administration of actin prevents tumour growth in mice by specifically antagonizing angiogenin, a potent inducer of neovascularization. To investigate whether the angiogenin/actin system is also of importance in renal disease, we examined the effect of actin during glomerular capillary repair in anti-Thy-1.1 mesangioproliferative glomerulonephritis. Male Wistar rats were injected intravenously with actin, a control protein, i.e. albumin, or vehicle alone at 8, 16, 24, 32, 40 and 48 h after disease induction. On day 8, actin-treated rats showed significantly more microaneurysms and persistent mesangiolysis as compared to both control groups. This was associated with increased proteinuria in actin-treated rats. Moreover, actin-treated rats showed increased counts of glomerular macrophages (+40%) and polymorphonuclear leukocytes (+100%) on day 3 as well as a decrease in glomerular endothelial area on days 3 and 8. However, no difference in early glomerular endothelial as well as non-endothelial cell proliferation was noted in actin-treated rats as compared to controls. Actin treatment had no apparent influence on mesangial cell activation (i.e. de novo expression of alpha-smooth muscle actin) or glomerular accumulation of fibronectin or type IV collagen. Additional in vitro studies demonstrated that extracellular actin inhibits the angiogenin but not VEGF(165)-induced proliferation of (glomerular) endothelial cells. Moreover, actin inhibited other, yet unidentified, serum-derived angiogenic factors. In conclusion, exogenous actin impairs glomerular capillary repair in experimental mesangioproliferative glomerulonephritis possibly due to interference with angiogenic factors such as angiogenin. Our combined in vivo and in vitro observations suggest that the release of intracellular actin during mesangiolysis is an endogenous pathway by which glomerular capillary damage is augmented
    corecore