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Significance Statement (109/120 Words)

Preclinical animal experiments are of high importance in nephrology research, with 

histology as a major readout. Here, the authors provide a multiclass histology 

segmentation tool to evaluate animal kidney disease models using deep learning. A 

convolutional neural network (CNN) enabled a rapid, automated, high-performance 

whole slide segmentation of renal histology, allowing high-throughput analyses in 

various species and multiple murine disease models. The CNN also showed high 

performance in patient samples, providing a translational bridge between preclinical 

and clinical research. Extracted quantitative morphological features closely correlated 

with standard morphometric measurements. In conclusion, deep learning-based 

segmentation in experimental renal pathology opens new dimensions of reproducible, 

unbiased and high-throughput quantitative digital nephropathology. 
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Deep Learning based segmentation and quantification 
in experimental kidney histopathology

Kidney Whole Slide Segmentation – Quantitative AnalysisMETHODS

CONCLUSION Accurate multispecies-, multimodel- Whole Slide 
Segmentation enabling automated quantitative analysis of renal histo-
pathology and facilitating high-throughput experimental nephropathology.

• 5 murine disease models, 6 species

• 72722 Annotations in 2930 patches 
(2100 Training / 160 Val. / 670 
Test)

• Classes:

U-Net Variant

healthy

Alport

Healthy Alport

Class Distribution

Correlation with Fibrosis

• Tubule
• Glomerular tuft
• Full glomerulus
• Artery

• Arterial lumen
• Vein
• Remaining tissue

RESULTS
• Instance Dice Scores:

    91.9% Tubule, 96.5% Glom., 
    94.7% Tuft, 84.1% Artery, 
    78.2% Lumen, 94.2% Vein

• Strong IHC/fibrosis correlations with 
remaining tissue area coverage
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Deep-Learning based multi-disease, multi-species, multi-class 
segmentation and quantification in experimental kidney 

histopathology

Running Title: DL in experimental nephropathology
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Significance Statement (109/120 Words)

Preclinical animal experiments are of high importance in nephrology research, with 

histology as a major readout. Here, the authors provide a multiclass histology 

segmentation tool to evaluate animal kidney disease models using deep learning. A 

convolutional neural network (CNN) enabled a rapid, automated, high-performance 

multiclass-, multispecies- and multi-disease whole slide segmentation of renal 

histology, allowing high-throughput analyses in various species and multiple murine 

disease models. The CNN also showed high performance in patient samples, providing 

a translational bridge between preclinical and clinical research. Extracted quantitative 

morphological features closely correlated with gold-standard morphometric 

measurements. In conclusion, deep learning-based segmentation in experimental 

renal pathology opens new dimensions of reproducible, unbiased and high-throughput 

quantitative digital nephropathology. 
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Abstract (246/250 Words)

Background: Preclinical animal models are essential for understanding kidney 

disease pathophysiology and for identifying novel diagnostic and therapeutic 

approaches. Nephropathological analyses represent major outcome parameters of 

such models. With increasing demands on precision medicine, novel high-throughput 

tools for quantitative, unbiased, reproducible and efficient histopathological analyses 

are required.

Methods: We propose a convolutional neural network (CNN) architecture for accurate 

segmentation of PAS stained kidney tissue of healthy mice and five commonly used 

murine disease models and other species used in preclinical research. The CNN was 

trained to segment six major renal structures, i.e. glomerular tuft, glomerulus including 

Bowman’s capsule, tubules, arteries, arterial lumina, and veins. To achieve high 

accuracy, we performed a large number of expert-based annotations (68,52372,722 in 

total).

Results: Multiclass segmentation performance was very high in all disease models. 

The CNN allowed high-throughput and large-scale, quantitative and comparative 

analyses of various models. Computational feature extraction in disease models 

revealed interstitial expansion, tubular dilation and atrophy, and glomerular size 

variability. Validation showed a high correlation with the current gold-standard 

morphometric analysis. The CNN also showed high performance in other species used 

in research, including rats, pigs, bears, and marmosets as well as in humans, providing 

a translational bridge between preclinical and clinical studies.

Conclusions: We have developed a deep learning algorithm for accurate multiclass 

segmentation of digital whole-slide images of PAS stained kidneys from various 

species and renal disease models. This enables highly reproducible quantitative 
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histopathology analyses in preclinical models, potentially also applicable to clinical 

studies.
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Introduction

Many basic science and preclinical studies require experiments in animals with 

histopathological assessment representing a major readout. The demands on robust 

but at the same time objective, precise and quantitative data steadily increase. In both 

clinical practice and research, histopathological evaluations are often performed 

manually. This is both time-consuming and not seldom poorly reproducible, particularly 

if not performed by experts. The projected decrease in pathologist workforce, which is 

particularly noticeable in highly specialized fields like nephropathology, and heavy 

engagement in clinical duties further complicate the situation1.

High-throughput digitization of histological slides, generating so-called whole slide 

images (WSIs), enables the effective use of computer-assisted histopathological 

analysis. Deep Learning (DL) is a subset of artificial intelligence (AI) that applies 

computer algorithms to find meaningful representations of raw data through multiple 

layers of abstraction2. DL’s most popular technique, the Convolutional Neural Network 

(CNN), is increasingly applied in pathology3 due to its high performance in tasks like 

detection of nuclei4, histology segmentation5 or prediction of molecular alterations from 

hematoxylin- and eosin-stained (H&E) sections6. We have previously shown that ML- 

and DL-based techniques can facilitate glomerulus detection and segmentation in 

WSIs7-10. Recently, two other groups reported the feasibility of the DL-based 

segmentation of human kidney WSIs11, 12 and glomerulus segmentation was already 

successfully used for subsequent analysis of glomerulosclerosis in PAS13, 14 or 

Trichrome-stained biopsies15. The usefulness of DL in animal models with broad 

histopathological injury patterns was not yet analyzed. 

Our main aim was to develop a CNN for multiclass segmentation of mouse kidney 

Periodic Acid Schiff (PAS)-stained histology, focusing on five commonly used models 
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of kidney diseases. We demonstrate the applicability of our CNN for large-scale 

histopathological segmentation followed by quantitative data extraction and confirm 

the performance by correlation with traditional image analysis tools. We also show the 

cost effective applicability for other species used in research, as well as for patient 

kidney samples.
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Methods 

Histology samples

We used paraffin-embedded kidney tissue fixed in formalin or methyl Carnoy’s 

solution. 1-2 µm thick sections were stained with periodic acid–Schiff (PAS) and 

counterstained with hematoxylin. Slides were digitalized using the whole-slide 

scanners NanoZoomer HT2 with 20x objective (Hamamatsu Photonics, Hamamatsu, 

Japan) or Aperio AT2 with 20x or 40x objective (Leica Biosystems, Wetzlar, Germany).

All samples from mice, rats, and pigs came from already published studies and were 

retrospectively analyzed16-21. All animal experiments were approved by the local 

government authorities: mouse, rats, pigs: Landesamt für Umwelt und 

Verbraucherschutz Nordrhein Westfalen; marmosets: Institutional animal welfare 

committee and subsequently by the Lower Saxony State Office for Consumer 

Protection and Food Safety (LAVES) (reference number 33.19‐42502‐04‐17/2496); 

bears: bear samples were obtained by hunters during the hunting seasons in Maine. 

Hunters were asked to participate on a voluntary base and no bears were killed for the 

specific purpose of this study. All methods were carried out in accordance with relevant 

guidelines and regulations).

Mouse models

We re-analyzed healthy male 10-12 week old C57BL/6N mice (n=41) and five widely 

used murine models of kidney diseases with different etiologies, i.e. unilateral ureteral 

obstruction (UUO, n=15)16, 17, adenine-induced nephropathy (adenine, n=15)18, Col4a3 

knock out (Alport, n=15)16, unilateral ischemia-reperfusion injury (IRI, n=15)16, 17, and 

nephrotoxic serum nephritis (NTN, n=15)19 as well as an additional sixth model used 

only for testing, the diabetic/metabolic nephropathy (db/db, n=3)20. The surgical UUO 

and IRI models were conducted in male 10-12 week old C57BL/6N mice as previously 
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described16, 17. An additional UUO day 10 cohort of three male C57BL/6J mice was 

contributed by R. Kramann aK and S. Menzel used as an external control cohort. For 

the adenine model, male 10-12 weeks old mice on C57BL/6N background were fed 

with 0.2% adenine-enriched diet as previously described18. For the NTN model, 

kidneys from male 12-14 weeks old 129X1/SvJ mice were harvested 10 days after i.v. 

injection of a sheep-anti-mouse glomerulus antiserum19. Col4a3 knockout mice were 

bred on a 129X1/SvJ genetic background and sacrificed at eight weeks of age. The 

db/db mice (BKS.Cg-Dock7m+/+Leprdb/J) were fed a high-fat Western diet for 9 weeks 

and a normal diet for another 5 weeks before sacrifice20.

In the UUO (sham, day 5, day 10 samples), IRI (sham, day 14, day 21 samples) and 

adenine model (day 1, day 14, day 21 samples), additional immunostainings and 

quantifications were performed as previously described17, 18 for comparison with 

network-based automated segmentation results from PAS stainings. In short, sections 

were deparaffinized and endogenous peroxidase was blocked with 3% H2O2. Slides 

were incubated with a primary antibody against α-SMA (α-smooth muscle actin; 

Dako/Agilent, M085101-2, Santa Clara, CA) followed by colorimetric detection using 

DAB and nuclear counterstain with methyl green. The stainings were digitalized and 

further processed using the viewing software NDP.view (Hamamatsu Photonics, 

Hamamatsu, Japan). The percentage of positively stained area was analyzed in whole 

cortices at 20x magnification using ImageJ software by measuring DAB positive pixels 

in 8-Bit images (National Institutes of Health, Bethesda, MD) as previously described16, 

18. All analyses were performed in a blinded manner.

Patient samples

Twelve Sixteen PAS stained sections from formalin-fixed and paraffin-embedded 

human kidney specimens (eight nine tumor-nephrectomies and four seven biopsies 
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(two minimal change disease, one pauci-immune glomerulonephritis, four acute 

tubular injury)) were anonymously obtained from the archive of Institute for Pathology 

of the RWTH Aachen University. In the case of tumor nephrectomies, healthy tissue 

far away from the tumors was used. Patient characteristics were: M:F = 7:9, age = 

63.13±11.86 years. The study was approved by the local ethical committee of the 

RWTH University (No. EK315/19).

Further species

For an extended analysis across different species, we used healthy kidney tissue 

from rats, pigs, common marmosets and black bears. We used renal tissue from male 

Wistar rats (n=8) and German landrace pigs (n=6). Renal tissue from male (n=2) and 

female (n=6) common marmosets was provided by the German Primate Center, 

Goettingen. Kidney tissue from black bears (n=8) was provided by SMS and RoKthe 

Jackson Laboratory and collected by local huntsmen from male animals at different 

ages all across Maine, US. Hunters were provided with detailed collection directions 

and provided datasheets voluntarily about deviations to requested timing in sample 

collection and fixation as well as metadata about the bears.  

Data set and ground truth

All technical terms used in the following sections are described in a glossary in Supp. 

Table 1. The Whole slide images (WSI, n = 1684 in total) were split into training, 

validation and test sets as follows: the 41 healthy mouse WSI - 30 training, three 

validation, eight test, the 15 WSI from each mouse model - 11 training, one validation, 

three test, the three db/db and three external UUO were only used for the test, the six 

pig WSI - five training, one test, and the eight marmosets, bears and rats WSI – each 

split to five training, three test, the 16 human WSI - ten training, six test slides: two test 
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WSI for performance quantifications and all four slides of acute tubular injury to visually 

show transferability to human disease.

Ground truth annotations were generated for patches of size 174 x 174 µm2 

(resampled into 516 x 516 pixels integer label images) by eight qualified annotators as 

outlined in Section “Data quality and quantity” using QuPath22. All annotations were 

corrected by a nephropathologist and researcher with long experience in nephrological 

basic research. Six predefined classes (i.e. renal structures) were annotated: 1) full 

glomerulus, 2) glomerular tuft, 3) tubule, 4) artery, 5) arterial lumen, 6) vein including 

renal pelvis and large non-tissue areas. Classes and annotation procedure are defined 

in detail in Supp. Table 2 and Supp. Fig. 1A-G. The remaining tissue comprising 

capillaries, adventitia of arteries, interstitial cells and matrix, and urothelium, was 

defined as the “interstitium”. For annotations, we mostly selected 20 random patches 

per slide. An overview of our annotations is provided in Supp. Table 3.per slide for mice 

and humans and ten for the remaining species, overall In total, we performed 2,930 

annotated patches and 72,722 annotated structures and split the annotated patches 

into 2,100 training (600 murine healthy, 220 each murine model, 200 human, 50 each 

remaining species), 160 validation (60 murine healthy, 20 each murine model) and 670 

test patches (160 murine healthy, 60 each murine model, 30 murine db/db, 30 external 

murine UUO, 30 each remaining species including human) for the development of our 

CNN (Supp. Table 4, Fig 1).resulting in 2,7202,930 annotated patches and 

68,52372,722 annotated structures (Supp. Table 2, Fig. 1).

Data quality and quantity

The most crucial prerequisite for high-performance of a deep learning system is the 

optimization of data quality and quantity. We performed the following optimization 

techniques: 1) the expert annotators were instructed and coached to precisely comply 
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with the developed structure definitions (Supp. Table 21 and Supp. Fig. 1) to reduce 

inter-annotator variability, thus yielding consistent annotations. 2) After manual 

annotation of about 20% of all annotations, we used these to train an initial 

segmentation network. We then used its predictions as pre-annotations facilitating the 

annotation effort for the annotators. These predictions were loaded into QuPath, 

converting the manual annotation task into a prediction correction task, reducing the 

annotation effort (Supp. Fig. 1H). This effectively reduced annotation effort from 

approximately 30 minutes for manual patch annotation to about three to five minutes 

for patch prediction correction, i.e. a six- to ten-fold increase in effectivity. 3) We applied 

the concept of active learning23 to optimize the selection of image patches for 

annotation. We used the initial segmentation network to compute whole-slide 

segmentation results and visually selected patches with the highest prediction errors 

most often showing complex or rare structures. We have repeated step 2) and 3) when 

about 60% of all annotations have been performed. This concept yields an extremely 

high degree of sample efficiency to ensure that the network will learn and improve in 

an optimal way.

CNN development

CNN-Model

Our employed deep learning model was based on the U-Net architecture24 (for 

details see Supp. Table 4). The U-Net was initially developed for biomedical image 

segmentation and represents one of the most popular and powerful segmentation 

techniques nowadays. We applied the following changes to the original architecture: 

1) we increased its depth by one to increase its receptive field, 2) we then used half 

channel numbers on each architectural level to reduce the risk of overfitting, 3) we did 

not half feature channel numbers when upsampling via transposed convolutions to 

Page 14 of 99

ScholarOne support: 888-503-1050

Journal of the American Society of NEPHROLOGY

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

effectively increase its capacity, and 4) we empirically applied instance normalization 

as well as leaky ReLU activation due to its empirically shown superiority over batch 

normalization and ReLU activation25, overall resulting in about 37 million learnable 

parameters in our CNN. As network inputs, Wwe extracted bigger image slide patches 

of 216 x 216 µm2, resampled into 640 x 640 pixels RGB images, around the annotated 

patches of 174 x 174 µm2, to improve prediction accuracy close at borders due to the 

resulting context-awareness26. 

Border class

To ensure the separation of different, touching instances of the same class, we 

introduced a new border class following27 by performing dilation on all tubules using a 

ball-shaped structuring element of radius three pixels. Considering arteries and 

glomeruli, only the overlap between their dilated versions, employing a radius of seven 

pixels, was also assigned to the border class. This way, the network was able to 

maintain a continuous label transition prediction from afferent and efferent arteriole to 

the glomerulus, thereby greatly improving the prediction accuracy of small afferent and 

efferent arterioles. The border class mainly represented the tubular basement 

membranes.

Training routines

We trained our CNN using the optimizer RAdam28 on random mini-batches of size 

six and applied weight decay with a factor of 1E-5 for regularization. We further 

scheduled the learning rate in a reduce-on-plateau fashion to reduce overfitting as 

follows: it was initially set to 0.001 and was divided by three when the validation loss 

had not fallen for 15 epochs. When the learning rate fell below 4E-6, training terminated 

and the network configuration providing the lowest validation error was chosen as the 

final model. Also, our data augmentation pipeline consisted of spatial, i.e. affine, 
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piecewise affine, elastic, flipping, 90-degree rotation, and color transformations, i.e. 

hue and saturation shifting, gamma contrast, normalization, to improve the CNN’s 

generalizability by simulating variance in tissue morphology and staining. The weighted 

categorical cross-entropy (WCE) and the Dice-loss29 were applied as equally weighted 

loss functions measuring the dissimilarity between prediction and ground truth for 

network optimization. Using WCE, we gave the border class a ten times greater weight 

than other classes to strongly enforce the separation of different instances from the 

same class. We chose hyperparameters based on the lowest validation loss. Overall, 

3-channel input (RGB) of spatial resolution 640 x 640 pixels were being forwarded 

through the network producing eight class probability maps, i.e. full glomerulus, 

glomerular tuft, tubule, vein including non-tissue background and renal pelvis, artery, 

arterial lumen, tubular border, remaining tissue representing our interstitium class, of 

spatial size 516 x 516 pixels. For each pixel, the class with the highest probability was 

assigned as the predicted label. To account for reproducibility, our code is publicly 

available at (https://github.com/NBouteldja/KidneySegmentation_Histology).

Postprocessing

In contrast to network ensembling, we applied the regularization technique test-time 

augmentation (TTA) to improve the CNN’s robustness at low cost. During inference, 

TTA forwards flipped versions of the input and averages their respectively back-flipped 

predictions to reduce prediction variance by considering multiple estimations. We also 

performed the following postprocessing techniques to all classes except the 

interstitium: 1) we removed too small instance predictions and assigned them to the 

remaining interstitium class, except for respective glomerular tuft and arterial lumen 

predictions that were assigned to their superior classes glomerulus and artery, 2) we 

Page 16 of 99

ScholarOne support: 888-503-1050

Journal of the American Society of NEPHROLOGY

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

performed hole filling, and 3) dilated tubular instance predictions due to their thicker 

border predictions.

Evaluation

Quantitative evaluation

We quantitatively evaluated network performance using instance-level Dice scores, 

i.e. in all image/ground truth pairs, we computed regular Dice scores between each 

ground truth instance and its maximally overlapping prediction (0 for false negatives), 

and vice versa for each prediction instance to also account for false positives. These 

Dice scores were averaged over all instances in all images, resulting in the instance-

level Dice score. This metric accurately denoted the mean detected area coverage per 

instance. We also employed the commonly used average precision (AP) as a detection 

metric. After counting and summing all true positives (TP), false positives (FP) and 

false negatives (FN) across all images, the AP was calculated as follows:

𝐴𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

A prediction was considered a TP when it overlapped with at least 50% of a ground-

truth instance. Both metrics range from 0 (maximal discordance: no overlap / TP) to 1 

(maximal agreement: perfect overlap / detections).

Semi-quantitative and qualitative evaluation

Performance on species other than mice and the external (held-out) dataset (db/db) 

was assessed as expert agreement. For this purpose, two experts in nephropathology 

independently assessed the predictions from the network on 30 patches of size 174 x 

174 µm2 per species equally distributed on respective test slides. Segmentations with 

more than approximately 10% divergence from the original structure were considered 

false. Incorrectly classified instances were considered false as well. Correctly classified 
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predictions with 90% or more overlap with the respective structure were counted as 

true positives. Finally, mean values from both experts were calculated and normalized 

to the total number of annotations per class.

We further evaluated our network’s capabilities to generalize using an external UUO 

cohort from a different laboratory by providing visual segmentation results.

Performance vs. amount of training data

A key unresolved issue regarding deep-learning systems is the specification of the 

minimum amount of training data necessary to reach satisfactory performances for a 

given task. Therefore, we performed an ablation study on performance differences 

when training on different training set sizes. In total, we trained another 13 CNNs from 

scratch using the following training sets: From all 2,100 training patches (representing 

our full CNN), we removed human patches or other species patches, or using murine 

patches only and in a stepwise manner removing randomly 9.1% of the patches (i.e. 

using only 90.9%, 81%...9.1% of the murine patches, but always including patches 

from healthy and each model)., i.e. using all data, removing human data, removing 

other species data, or using only 90.9% to 9.1% murine data of each model. The 

validation and test sets as employed for our full CNN always remained the same.

All-rounderFull CNN vs. specialized single models

We examined the impact on network performance when jointly training on data from 

different domains, i.e. different species and murine disease models. We compared our 

full CNN trained on all training data (including murine models and species) with 6 

networks, each solely trained and tested on a particular single murine models, i.e. 

healthy, UUO, adenine, Alport, IRI, NTN, to analyze whether the network a) benefits 

from shared multi-domain information by potentially learning more specialized class 

features or b) can learn the same domain-specific features maintaining equal 
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segmentation performance or c) whether the heterogeneity of multi-domain information 

might irritateperturb the network resulting in lower prediction accuracies.

State-of-the-art model comparison

We compared our model with its unmodified variant, the vanilla U-Net26, to explore 

whether our technical modifications to the standard network architecture had an impact 

on performance. We also compared our network with the context-encoder network30, 

another novel state-of-the-art segmentation network particularly suitable for the 

segmentation of structures with different sizes that was shown to outperform the vanilla 

U-Net. For all comparisons, the same train and test-sets were used.

Comparative feature extraction

Based on the CNN segmentation results, we extracted the following histological 

features from cortical areas: 1) relative proportions of tissue area covered by each 

class, 2) single class instance sizes (including sizes of Bowman’s space by subtracting 

the glomerular tuft area from each full glomerulus) and 3) tubular diameters. We 

included all instances independent of the plane they were cut. We used data from four 

individual mice at each of the following model time points: UUO day 10, adenine day 

14, Alport mice at eight weeks of age, IRI day 14, NTN day 10 and randomly chosen 

healthy mice. In each WSI, we extracted ten cortical patches of size 700 x 700 µm2 for 

feature computation. We defined the maximum tubular diameter as the diameter of the 

largest circle fully fitting inside the tubules, a feature that can represent both tubular 

dilation and atrophy. Tubular diameter computation was performed by employing the 

distance transform function and extracting its maximum value. For class instance size 

and tubular diameter computation, only instances fully inside our selected patches 

were considered.

Correlation with immunohistochemical analysis
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Next to qualitative and quantitative performance evaluation, we correlated our 

results with gold-standard morphometric analyses, to assess the capabilities of 

facilitating relevant histopathological applications. We employed data from the three 

different murine models UUO, adenine, and IRI. We extracted five cortical patches of 

size 700 x 700 µm2 in each WSI and correlated the remaining interstitial area coverage 

predicted by our automated approach with results from a computer-assisted 

morphometric analysis of immunohistochemical stainings for α-SMA from the same 

kidneys, in which big vessels were always excluded 16, 18.

Statistics

To measure the strength of the (linear) correlation between immunohistochemical 

fibrosis quantifications and network-based interstitial area estimations, we employed 

the Pearson correlation coefficient (PCC) and the Spearman correlation coefficient 

(SCC) and computed respective p-values based on the t-distribution. We used Tt-tests 

for comparison between CNN, the vanilla U-Net and the context-encoder by comparing 

respective Dice score distributions of each class across all models, and to pairwisely 

compare pairwise class instance sizes from healthy and all disease models (p<0.05 

was considered statistically significant).
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Results

Ground truth

For the training and evaluation of our full CNN, we performed 68,52372,722 

annotations of six classes, i.e. renal structures, selected based on the most commonly 

performed compartment-specific quantifications in animal models: tubule, full 

glomerulus, glomerular tuft, artery (including intima and media but excluding 

adventitia), arterial lumen, and vein (including renal pelvis and non-tissue slide 

background). We used kidneys from murine disease models, different species and 

humans (Supp. Table 3, Supp. Fig 1, Fig. 1). Inclusion of renal pelvis and large non-

tissue areas in the “vein” instead of our “interstitium” class improved predictions of such 

large white structures due to their great local similarities and was an important 

prerequisite for more precise quantitative analyses, particularly of the interstitium. We 

have not distinguished different tubular segments, particularly due to the difficult 

distinction of injured tubules in the disease models. The tubular class did not include 

tubular basement membranes, to allow a very specific analysis of tubular cells. Both 

cortex and medulla were annotated, whereas perirenal tissues were not included. We 

recognized some obstacles in generating annotations, outlined in detail in Supp. Fig. 

2. All annotations were ultimately corrected by two experts in nephropathology and 

structures that were not feasible to assign to a class based on our class definitions with 

sufficient certainty and consensus were not included in annotations (altogether 

representing only very few instances).

Accurate multiclass segmentation of murine kidney sections

While network training took about 8.5 hours on the graphics processing unit (GPU) 

RTX2080Ti and required approximately 10 GB of GPU memory, automated 
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segmentation of a whole murine kidney longitudinal cross-section was performed in 

less than five minutes on the graphics processing unit RTX2080Tisame GPU. 

Qualitative segmentation results of representative WSIs from healthy and diseased 

kidneys showed high accuracy for all six classes (Fig. 2A-C and Supp. Fig. 3A-C). In 

a healthy kidney, an accidental scratch was correctly assigned to the vein class 

including non-tissue areas (Fig. 2A, arrow). In healthy murine kidneys, our CNN was 

able to detect almost 95% of all tubular structures with an instance segmentation 

accuracy of 93.2%. Almost all glomeruli were correctly detected and segmented, while 

detection and segmentation accuracy were lowest for arteries and arterial lumina (Fig. 

3A-A’). Segmentation performance in UUO (Fig. 3B-B’) and IRI (Fig. 3C-C’) were 

similar to healthy kidneys for tubules, glomeruli and vein classes (all >90%). Alport 

mice represented the most complex model, with correct segmentation of 91% of all 

tubules and 95% of all glomeruli, including those with severe and global pathological 

alterations such as extracapillary proliferates (cellular crescents) or focal segmental 

glomerulosclerosis (FSGS) (Fig. 3D-D’). Detection and segmentation results for 

arteries and their lumina were the lowest ranging from 79.1% (segmentation artery in 

IRI) to 88.1% (segmentation artery in healthy) and from 73.5% (segmentation arterial 

lumen in IRI) to 81.1% (segmentation arterial lumen in Alport), respectively. The CNN 

was able to correctly detect and segment disease-specific pathologies, e.g. dilated 

tubules in UUO (Fig. 3B), atrophic tubules in IRI (Fig. 3C), glomerular crescents and 

FSGS in Alport mice and NTN (Fig. 3D; Supp. Fig. 4A, arrows), and tubules with renal 

crystals in the adenine model (Supp. Fig. 4B, arrows). Medullary structures were also 

accurately segmented in all models (Supp. Fig. 5A-F’’). Almost every segmented item, 

e.g. one tubular cross-section, was recognized as an individual instance despite 

potentially touching other class instances and could be therefore further analyzed 

separately on instance level (Supp. Fig. 5A’’-F’’).
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A very small fraction of structures was not correctly detected or not precisely 

segmented (Supp. Fig. 6). These included glomeruli with a direct connection to the 

proximal tubule, in which either a part of the glomerulus was identified as tubule or 

tubular cells are marked as part of the glomerulus (Supp. Fig. 6A-A’, arrow). Those 

examples also included special instances, e.g. fibrin within crescents (Supp. Fig. 6B-

B’, arrow), which was missing in the training data set. We also observed some 

incorrectly detected tubules, mostly if severely injured, present as denuded basement 

membrane (Supp. Fig. 6C-C’ arrow), massively dilated (Supp. Fig. 6D-D’, arrowhead) 

or atrophic (Supp. Fig. 6D-D’ arrow).

Detection rates were improved in all models by providing more training data (Supp. 

Fig. 7). In all models and almost all classes (except arteries and arterial lumina), 

approximately 35% of ground truth data was already sufficient to obtain 90% or higher 

detection rates. Especially for more complex structures such as arteries or very small 

structures like arterial lumina, detection performance could be substantially improved 

by integrating more training data, indicating that further improvement of segmentation 

accuracy for some classes is feasible (Supp. Fig. 7). For other classes, especially 

tubules, the performance was high and stable even in case of only about 9% training 

data. 

We compared our CNN with its variants, that have been solely trained and tested 

on single murine models (healthy, UUO, adenine, Alport, IRI, NTN). In almost all 

models and classes, especially arteries and lumina, our universal full CNN trained on 

all domains, provided higher segmentation performances compared to the variants 

(Supp. Fig. 8A-F). 

We next compared our CNN with its unmodified variant, the vanilla U-Net, and with 

a context-encoder, a novel state-of-the-art segmentation framework which was shown 
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to outperform the U-Net30. Our modified CNN significantly outperformed the unmodified 

vanilla U-Net (Supp. Table 5) and the context-encoder (Supp. Table 5) in the majority 

of classes and models, including arterial structures. Thus, our modified architecture 

was suitable for the specific task of kidney histology segmentation. 

Multiclass segmentation in external UUO test set and held-out db/db model

We next examined performance of our full CNN on PAS slides from an external 

UUO cohort and also in a completely different disease model, i.e. the db/db mice on a 

high-fat diet20, both not included in the training. Semiquantitative Quantitative 

evaluation according to our expert agreement confirmed very high segmentation 

accuracies of at least 95% area coverage with the ground truth for glomeruli, tufts, and 

tubules in both experiments (Table 2, Supp. Fig. 9A-D’’). As in other models, the 

segmentation of arteries and their lumina were less accurate (both approximately 80%, 

respectively59.4% and 84.2%, respectively). Overall, these results are comparable to 

the other models included in training indicating strong generalization capabilities of our 

CNN across different laboratories and models.

We also used PAS slides from an external UUO cohort to estimate the CNN’s 

generalization capabilities. Our CNN correctly segmented the classes in both the 

cortex and the medulla (Supp. Figure 9C-D’’), supporting the applicability on datasets 

from different laboratories that were not included in the training.

Multiclass segmentation of murine kidney sections enables feature extraction 

and analysis
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The CNN based segmentation made it possible to extract quantitative histological 

features on a large scale. We analyzed each of the six classes in all disease models 

(Fig. 4A-F), overall analyzing 70,311 cortical instances. We compared healthy kidneys, 

UUO day 10, adenine day 14, Alport at eight weeks of age, IRI day 14 and NTN day 

10. The glomerular area significantly increased in all models, particularly in those with 

primary glomerular damage, i.e. Alport and NTN. This expansion of glomeruli reached 

areas of above 14,000 µm2 in NTN, compared to 6,000 µm2 as the largest measured 

glomerular area in healthy mice. We observed similar findings for glomerular tufts, 

except for Alport mice, in which the tuft size was significantly reduced due to sclerosis 

(Fig. 4B). Specific analyses of the area of Bowman’s space confirmed its expansion in 

the two models with known glomerular damage, i.e. NTN and Alport. In addition, the 

Bowman’s space was also significantly increased in the Adenine model but decreased 

in the IRI model (Fig. 4H). Healthy tubules exhibited two major groups with peak areas 

of 900 µm2 and 400 µm2, likely representing different tubular segments. In all disease 

models, tubular area distributions converged to a single peak at about 400-500 µm2, 

in line with tubular damage and simplification. Tubular dilation was found in several 

disease models, and prominently increased tubular sizes were detected in NTN 

(maximum tubular size: 20,000 µm2), Alport (17,000 µm2) and UUO (15,000 µm2), 

compared to healthy (11,000 µm2) (Fig. 4C). 

The maximum cross-sectional area of arteries was not changed while the arterial 

lumen was slightly reduced in disease models compared to healthy kidneys and 

significantly decreased in the IRI model (Fig. 4D,E). 

The segmentation also allowed us to analyze changes in the relative proportions of 

tissue area coverage of all classes in all models (Fig. 5A-F). Compared to the interstitial 

area in healthy kidneys (mean 14%), it increased in all disease models by two- to three-
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fold ((UUO: 38.6%; adenine 26.3%; Alport: 28,7%; IRI: 36.5%; NTN: 23.9%). 

Conversely, the tubular area decreased in all models by 15-30% (from 78% in healthy 

to 55.3% - 66.3% in disease). We found no differences in the area occupied by arteries 

or their lumina.

To analyze tubular changes in more detail, we measured the maximum tubular 

diameter in cortical tubular cross-sections. This was defined as the diameter of the 

largest circle completely fitting into a segmentation of a single tubular cross-section 

(Fig. 6A-A’). In line with the single instance area of tubulestubular size (Fig. 4C), 

diameter distribution in healthy kidneys showed two major groups with approx. 15 and 

30 µm diameter, likely representing proximal and distal tubules versus collecting ducts 

(Fig. 6A). In all disease models, the maximum diameter of tubules was higher than in 

healthy kidneys (means of healthy: 49 µm, UUO: 56 µm, adenine: 63 µm, Alport: 

83 µm, IRI: 56 µm, NTN: 67 µm) (Fig. 6B-G). However, in UUO, IRI, and Alport, the 

number of small tubules also increased, representing tubular atrophy and being in line 

with the results of significantly decreased tubular instance sizes (Fig 4C). In the 

adenine model, the number of medium-sized tubules increased due to intratubular 

adherent or obstructing crystals. The NTN model contained the most tubules with a 

maximum diameter of 20 µm.

Segmentation-based feature correlates with gold-standard morphometric 

analyses

Our interstitium class includes several histological compartments, namely the true 

interstitium, capillaries, and adventitia of arteries. To understand whether this class can 

still provide useful quantitative information, we compared the interstitial area of the 

cortex with computer-assisted morphometric analyses of the same kidneys of three 
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selected models. We used immunohistochemical stainings for α-SMA, a widely used 

marker for the expansion of interstitial myofibroblasts, which is highly upregulated in 

the UUO, IRI, and adenine model 16, 18. Representative segmentation showed that 

compared to healthy kidneys (Fig. 2), the non-classified interstitial areas increased in 

all renal disease models (Fig. 7A-C). Interstitial area estimated by our CNN strongly 

correlated with the expression of the myofibroblast marker α-SMA in all models (Fig. 

7A’,B’,C’).

Translation of multiclass segmentation to kidneys from different species and 

humans

To show the broader applicability of our CNN, we applied it to kidneys of other 

species, including rats, pigs, black bears, and marmosets. With only a few additional 

training sets per species, i.e. 50 annotated patches each, the CNN was able to detect 

and segment all classes in the cortex (Fig. 8A-D’’) and medulla (Supp. Fig. 10A-D’’) in 

all species, overall providing very high detection and segmentation accuracies of all 

classes (Table 2). Tubules and glomeruli were detected most often in all species (Table 

2). Considering all classes, detection accuracy was similarly high in rats, pigs, and 

bears but was lower in marmoset kidneys (Table 2).

Finally, we tested the CNN on normal human renal biopsies and nephrectomy 

samples.from both human biopsies and nephrectomies from normal and diseased 

kidneys. Our full CNN segmented all classes in both cortex and medulla and was 

applicable to large tissue specimens from nephrectomies and on renal biopsies (Fig. 

8E-F’’, Supp. Fig. 10E-F’’). Semi-qQuantitative validation confirmed high detection 

segmentation accuracies of all classes. However, as compared to other species, with 

exception of arteries, for which the performance was lower for glomerular tuft, arteries 
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and their lumina (Table 2). As a proof-of-concept we additionally provided visual 

segmentation results in human biopsies showing acute tubular damage, a feature that 

is also common in many animal models, yielding promising segmentation results 

(Supp. Fig. 11).
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Discussion

We developed a CNN for automated multiclass segmentation of renal histology of 

different mammalian species and different experimental disease models with broad 

pathological alterations. In comparison, the currently available multiclass segmentation 

model was developed on patients’ samples only and focused on transplant specimens 

10. Compared to the previous work 10, we also technically extended the segmentation 

pipeline by employing suitable task-specific modifications to network architecture, 

novel approaches for data quality and quantity improvement, modern network training 

and regularization routines, and network performance quantification based on novel 

and precise evaluation metrics. As a proof of concept, we used the segmentation 

results to provide quantitative metrics for efficient, comparative, high-throughput 

histopathological analyses. 

To standardize the annotation procedure, we first developed precise class 

definitions and performed several training sessions with all expert annotators. This step 

was also used in difficult radiological segmentation tasks, in which experts underwent 

a period of training of up to several months, until they had reached a defined 

reproducibility ensuring sufficient quality of manual annotations31. These definitions 

can also guide future training for further model improvement. The annotation process 

is highly time-consuming, which is a major limiting factor. In order to facilitate the 

process, we loaded predictions into QuPath, which served as pre-annotations and 

reduced manual annotation effort by up to 90%. This made it possible to perform an 

exceedingly large number of expert-based annotations (68,52372,722 in total), 

representing the largest study to date for histopathologic structure segmentation. We 

also applied active learning for patch selection, i.e. we visually selected patches with 

the largest prediction errors and corrected them, which further strongly improved the 
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CNN performance while reducing the number of required annotations as described by 

others32. Besides, QuPath currently represents the most widely used open-source and 

freely available software for digital pathology, enabling broad, vendor-independent 

applicability.

We have chosen six different broadly used murine models in nephrology research. 

The models provide a wide variety of distinct etiologies and histopathological 

alterations, i.e. obstructive nephropathy, ischemia-reperfusion injury, crystal-induced 

nephropathy, immune-mediated glomerulonephritis, genetic glomerulopathy, and 

metabolic (diabetic) nephropathy. Despite the broad differences in histopathology, our 

CNN was able to segment all structures in all models with high accuracy. Our results 

suggest that a single comprehensive CNN might perform better compared to specific 

CNNs trained for each model, and that performance can be further improved by 

integrating data from different species, including humans. This follows from the partial 

class similarities across all models and species, effectively yielding more useful 

training data and thus contributing to learning more generalizable class features.

Only one-third of the training data was sufficient to reach approximately 90% 

accuracy in all classes, except for arteries and their lumina. For both latter classes, 

performance improved continuously as training data sets increased, indicating options 

for further improvements. Due to the amount of training data, strong color 

augmentations and active learning, our CNN yielded accurate segmentation of an 

external UUO dataset and db/db mice, a model with distinct pathology the network had 

never seen before. Our data also showed that it is possible to achieve promising 

segmentation accuracy in different species or models with rather little additional 

annotation effort by experts. This might allow rapid adaptation of the algorithm to 

samples from various laboratories and translation to additional models and 
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pathologies. This is an important prerequisite for high-throughput and reproducible 

analyses and will be essential to reduce the workload while at the same time increasing 

the quantitative precision in experimental and potentially also clinical histopathology. 

As a proof of concept, we applied our model to human biopsies with acute tubular 

damage with promising segmentation accuracy. However, further studies will be 

needed to develop a model that is capable of efficiently segmenting the broad spectrum 

of human renal pathology.

We describe the applicability of implementing basic feature extraction on top of the 

segmentation results, providing compartment-specific quantifications. Using a 

handcrafted feature, tubular diameters on an entire slide could be analyzed within 

minutes, a task that would be impossible to perform manually. Such basic analyses 

can provide valuable quantitative information about healthy renal morphology, novel 

insights into experimental disease models and human kidney diseases while saving 

an enormous amount of time. We found that the mean instance size of glomeruli was 

increased all our disease models. This was expected for models with primary 

glomerular damage and crescent formation, i.e. Alport and NTN, which both also 

exhibited larger Bowman’s space, but was surprising for models with primary 

tubulointerstitial damage. Possible explanations are compensatory glomerular 

hypertrophy with loss of nephrons and enlargement of Bowman’s space due to 

obstruction of the associated tubule, e.g. in the adenine model and the IRI model. An 

exception was the Alport model, which exhibited significantly smaller glomerular tuft 

sizes due to pronounced glomerulosclerosis. For tubules, we found a significant 

decrease in tubular size in all disease models but at the same time an increase of the 

maximum tubular instances in UUO, Alport, and NTN. These data provide quantitative 

evidence for tubular injury and atrophy in all models and model-specific cystic tubular 

dilation, which was confirmed by the direct analysis of tubular dilation. Overall, these 
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large scale precise quantitative data provide novel read-outs for interventional studies, 

bring new insights into pathological disease mechanisms and potentially also lead to 

reduced numbers of animals required for research. 

Our study has several limitations. First, in our current CNN, the non-segmented area 

comprises a collection of various histological structures, including peritubular 

capillaries, interstitium, arterial adventitia, tubular basement membranes, and all other 

non-recognized structures. Although we found a high correlation with the expression 

of the fibrosis marker α-SMA, our “interstitial area” does not specifically reflect 

fibroblasts or fibrosis. Further annotations and training of the specific subclasses, e.g. 

capillaries, immune cells, adventitia, and tubular basement membranes, will enable us 

to refine the segmentation. Second, we have not differentiated between the various 

tubular segments. Although automated differentiation between tubular segments 

would allow a more comprehensive study of tubular injury, we recognized that manual 

annotations of tubular segments on PAS stainings were not possible in some disease 

models with reasonable certainty. An automated differentiation between cortex and 

medulla could be the first step towards this direction. Third, our study is descriptive and 

does not allow to draw mechanistic implications. FourthThird, human renal diseases 

show a multitude of different histopathological alterations, some of which, e.g. 

membranous or membranoproliferative glomerular changes, are not well reflected in 

our animal models. Further studies, expert annotations, consensus, and technical 

improvements will be required for a holistic segmentation model that comprehensively 

covers all (human) renal diseases. Finally, although our network showed promising 

results on external, held-out data from a different laboratory, multi-center studies will 

be required to assess the full generalization capability of the network.
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In conclusion, our DL algorithm for segmentation of kidney histology for multiple 

murine disease models and multi-species, multi-class segmentation of kidney histology 

provides a first, major step towards fully automated high-throughput quantitative 

computational experimental nephropathology.
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Tables

Table 1. Quantitative segmentation and detection performance of six classes in 

murine kidneys.

Segmentation performance was calculated by averaging all instance Dice scores from 

each instance in all test images denoting the mean detected area coverage per 

instance. We employed average precision metric to measure detection performance.

IRI = ischemia reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral 

ureteral obstruction

DetectionMouse models

full 

glomerulus

glomerular 

tuft

tubule artery arterial 

lumen

vein

Healthy mouse 98.7 96.5 94.9 87.4 76.2 93.9

UUO 100 100 91.0 78.2 73.3 100

IRI 95.7 97.7 89.3 73.3 67.6 100

Adenine 100 100 93.0 82.4 80.3 90.3

Alport 92.5 93.4 88.6 73.2 79.2 80.0

NTN 96.2 98 93.5 86.1 74.0 89.2

SegmentationMouse models

full 

glomerulus

glomerular 

tuft

tubule artery arterial 

lumen

vein

Healthy mouse 96.5 93.7 93.2 88.1 80.3 94.3

UUO 97.5 95.6 90.9 82.3 75.0 97.6

IRI 96.0 95.4 90.2 79.1 73.5 97.7

Adenine 98.8 97.2 93.0 87.9 80.9 93.5

Alport 94.7 91.4 90.6 80.3 81.1 89.2

NTN 95.5 94.8 93.2 86.8 78.2 92.8
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Table 2. Semi-quantitative detection performance of six classes in kidneys from 

different species.

Average precisions were assessed by expert agreement as described in the 

“Evaluation” section to measure detection performance.

DetectionSpecies/Model

full 

glomerulus

glomerular 

tuft

tubule artery arterial 

lumen

vein

db/db mice 79.3 80.8 90.7 59.4 84.2 100.0

Rat 93.8 69.6 97.0 82.8 91. 9 84.6

Pig 86.7 93.3 96.2 84.2 90.0 73.1

Black bear 95.0 87.5 95.5 75.0 85.7 93.3

Marmoset 86.7 66.7 90.7 55.4 75.0 96.2

Human 100.0 81.8 90.0 33.3 92.3 83.3

Table 2. Quantitative segmentation and detection performance in kidneys from 

different species, held-out murine disease model db/db, and external UUO.

Segmentation performance was calculated by averaging all instance Dice scores from 

each instance in all test images denoting the mean detected area coverage per 

instance. We employed an average precision metric to measure detection 

performance.

Detection

full 

glomerulus

glomerular 

tuft

tubule artery arterial 

lumen

vein

Rat 100 82.1 94.7 85.7 81.0 92.9

Pig 93.8 100 95.6 100 95.2 84.6

Black bear 88.3 85.7 96.8 94.3 89.2 100

Marmoset 100 100 95.1 82.7 73.5 92.9

Human 88.2 72.5 91.8 66.7 68.4 72.7

db/db mice 93.1 96.3 90.5 60.6 58.3 100

External UUO 93.6 97.7 94.8 68.2 69.6 87.5
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Segmentation

full 

glomerulus

glomerular 

tuft

tubule artery arterial 

lumen

vein

Rat 99.5 88.9 96.5 91.6 89.5 93.9

Pig 96.5 99.0 97.9 96.9 96.3 91.6

Black bear 87.5 91.5 97.3 91.8 94.3 99.7

Marmoset 98.9 95.9 96.8 86.0 86.8 96.2

Human 93.4 76.6 95.2 79.1 77.6 85.1

db/db mice 95.9 97.5 94.9 81.0 79.1 99.0

External UUO 96.6 98.5 97.0 78.2 81.4 93.3
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Figure legends

Figure 1. Overview of experimental design.

Our deep learning model (here: Full CNN) was trained with annotations from healthy 

and diseased murine kidneys and with annotations from five different species including 

humans. 72,72268,523 single instance annotations comprised six different renal 

structures: “tubule”, “full glomerulus”, “glomerular tuft”, “artery”, “arterial lumen” and 

“vein”. The model was tested on healthy and diseased murine kidneys, on five different 

other species, on a held-out murine disease model, and an external UUO cohort. 

Finally, wWe used the automatically segmented kidneys to perform quantitative feature 

analysis, e.g. instance size distributions and correlations with IHC. Further experiments 

included an ablation study on varying training dataset sizes to analyze its impact on 

model performance, and we also compared the full CNN with its variants solely trained 

on single murine models as well as with different state-of-the-art segmentation 

networks including the vanilla U-net and context-encoder networks.

H = Human, IHC = immunohistochemistry, IRI = ischemia-reperfusion injury, NTN = 

nephrotoxic nephropathy, P = Patch, UUO = unilateral ureteral obstruction.

Figure 2. Automated segmentation on whole slide images of murine kidneys.

The CNN generates segmentation predictions on a whole slide image (WSI) of a 

healthy mouse kidney (A). All six classes, i.e. tubule, glomerulus, glomerular tuft, 

artery, arterial lumen, and vein are precisely segmented. Even tissue damage in the 

form of an artificial scratch (arrow) is correctly assigned to the vein class including the 

background. Similar segmentation predictions are generated for WSIs of IRI (ischemia-

reperfusion injury (B) and adenine (C) kidneys.
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Figure 3. Quantitative segmentation performance in murine kidney disease 

models.

Representative PAS pictures and corresponding segmentation predictions generated 

by the CNN for murine healthy (A), UUO (B), IRI (C) and Alport (D) kidneys. Instance 

segmentation accuracy is shown by instance-Dice scores for each class in all four 

models (A’-D’).

Data are presented in box plots with median, quartiles, and whiskers. Glom = 

Glomerulus, IRI = ischemia-reperfusion injury, Tuft = Glomerular tuft, UUO = unilateral 

ureteral obstruction.

Figure 4. Single Instance class areasInstance sizes of each class.

Violine plots show the distribution pattern of instanced areascross-sectional instance 

sizes for each of the six automatically segmented classes: full glomerulus (A), 

glomerular tuft (B), tubule (C), artery (D), arterial lumen (E), vein (F) in healthy, UUO, 

IRI, adenine, Alport and NTN kidneys. In addition, we subtracted the glomerular tuft 

area from each glomerulus (G) to analyze size distribution of Bowman’s space (H).

* = p < 0.05 vs. healthy. IRI = ischemia-reperfusion injury, NTN = nephrotoxic 

nephropathy, UUO = unilateral ureteral obstruction.

Figure 5. Relative area distributions of automatically segmented classes.

The relative area distributions in percent in healthy (A), UUO (B), IRI (C), adenine (D), 

Alport (E) and NTN (F) kidneys additionally give information on the proportion of 

remaining non-classified tubulointerstitial area (shown in black).

IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral 

ureteral obstruction.
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Figure 6. Quantitative analysis of tubular dilation.

An exemplary illustration of automated analysis of tubular dilation in PAS stainings of 

healthy (A) and UUO (A’) mouse kidney (top). The maximum tubular diameter is 

defined as the diameter of the maximum sized circle that fits into a tubule 

segmentation. Violine plots show the distribution of the analyzed tubular diameter 

within each model, i.e. for healthy (B), UUO (C), IRI (D), adenine (E), Alport mice (F) 

and NTN (G).

IRI = ischemia-reperfusion injury, N=Number of analyzed tubule-instances, NTN = 

nephrotoxic nephropathy, UUO = unilateral ureteral obstruction.

Figure 7. Correlation between segmentation and standard computer-assisted 

morphometric analyses.

(A) Representative picture of the automated segmentation prediction in a murine UUO 

kidney section. The non-classified remaining tissue (black) correlates with α-SMA+ 

area (A’) quantified in immunostainings of the same kidneys. (B) Representative 

picture of the automated segmentation prediction on a murine IRI kidney section. The 

non-classified remaining tissue (black) correlates with α-SMA+ area (B’) quantified in 

immunostainings from the same kidneys. (C) Representative picture of the automated 

segmentation prediction on a murine adenine kidney section. The non-classified 

remaining tissue (black) correlates with α-SMA+ area (C’) quantified in 

immunostainings from the same kidneys.

IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, PCC = Pearsons 

correlation coefficient, SCC = Spearmans correlation coefficient, UUO = unilateral 

ureteral obstruction.

Figure 8. Automated segmentation of kidneys from various species.
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Representative pictures illustrate the segmentation quality of the CNN in kidney tissue 

from rat (A-A’’), pig (B-B’’), black bear (C-C’’) and marmoset (D-D’’). Predictions (A’, 

B’, C’, D’) depict different classes, while A’’-D’’ display predictions on instance level for 

tubules. All classes are also correctly detected and segmented on human nephrectomy 

(E-E’’) as well as smaller human biopsy (F-F’’).
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Figure 1. Overview of experimental design.
Our deep learning model (here: Full CNN) was trained with annotations from healthy and diseased murine 

kidneys and with annotations from five different species including humans. 72,722 single instance 
annotations comprised six different renal structures: “tubule”, “full glomerulus”, “glomerular tuft”, “artery”, 
“arterial lumen” and “vein”. The model was tested on healthy and diseased murine kidneys, on five different 
other species, on a held-out murine disease model, and an external UUO cohort. We used the automatically 
segmented kidneys to perform quantitative feature analysis and correlations with IHC. Further experiments 
included an ablation study on varying training dataset sizes to analyze its impact on model performance, 

and we also compared the full CNN with its variants solely trained on single murine models as well as with 
different state-of-the-art segmentation networks including the vanilla U-net and context-encoder networks.

H = Human, IHC = immunohistochemistry, IRI = ischemia-reperfusion injury, NTN = nephrotoxic 
nephropathy, P = Patch, UUO = unilateral ureteral obstruction. 
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Figure 2. Automated segmentation on whole slide images of murine kidneys.
The CNN generates segmentation predictions on a whole slide image (WSI) of a healthy mouse kidney (A). 

All six classes, i.e. tubule, glomerulus, glomerular tuft, artery, arterial lumen, and vein are precisely 
segmented. Even tissue damage in the form of an artificial scratch (arrow) is correctly assigned to the vein 
class including the background. Similar segmentation predictions are generated for WSIs of IRI (ischemia-

reperfusion injury (B) and adenine (C) kidneys. 
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Figure 3. Quantitative segmentation performance in murine kidney disease models. Representative PAS 
pictures and corresponding segmentation predictions generated by the CNN for murine healthy (A), UUO 
(B), IRI (C) and Alport (D) kidneys. Instance segmentation accuracy is shown by instance-Dice scores for 

each class in all four models (A’-D’).
Data are presented in box plots with median, quartiles, and whiskers. Glom = Glomerulus, IRI = ischemia-

reperfusion injury, Tuft = Glomerular tuft, UUO = unilateral ureteral obstruction. 

170x229mm (600 x 600 DPI) 
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Figure 4. Instance sizes of each class. 
Violine plots show the distribution pattern of cross-sectional instance sizes for each of the six automatically 
segmented classes: full glomerulus (A), glomerular tuft (B), tubule (C), artery (D), arterial lumen (E), vein 
(F) in healthy, UUO, IRI, adenine, Alport and NTN kidneys. In addition, we subtracted the glomerular tuft 

area from each glomerulus (G) to analyze size distribution of Bowman’s space (H). 
* = p < 0.05 vs. healthy. IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = 

unilateral ureteral obstruction. 
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Figure 5. Relative area distributions of automatically segmented classes.
The relative area distributions in percent in healthy (A), UUO (B), IRI (C), adenine (D), Alport (E) and NTN 

(F) kidneys additionally give information on the proportion of remaining non-classified tubulointerstitial area 
(shown in black).

IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral obstruction. 
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Figure 6. Quantitative analysis of tubular dilation.
An exemplary illustration of automated analysis of tubular dilation in PAS stainings of healthy (A) and UUO 
(A’) mouse kidney (top). The maximum tubular diameter is defined as the diameter of the maximum sized 

circle that fits into a tubule segmentation. Violine plots show the distribution of the analyzed tubular 
diameter within each model, i.e. for healthy (B), UUO (C), IRI (D), adenine (E), Alport mice (F) and NTN 

(G).
IRI = ischemia-reperfusion injury, N=Number of analyzed tubule-instances, NTN = nephrotoxic 

nephropathy, UUO = unilateral ureteral obstruction. 
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Figure 7. Correlation between segmentation and standard computer-assisted morphometric analyses.
(A) Representative picture of the automated segmentation prediction in a murine UUO kidney section. The 
non-classified remaining tissue (black) correlates with α-SMA+ area (A’) quantified in immunostainings of 
the same kidneys. (B) Representative picture of the automated segmentation prediction on a murine IRI 
kidney section. The non-classified remaining tissue (black) correlates with α-SMA+ area (B’) quantified in 

immunostainings from the same kidneys. (C) Representative picture of the automated segmentation 
prediction on a murine adenine kidney section. The non-classified remaining tissue (black) correlates with α-

SMA+ area (C’) quantified in immunostainings from the same kidneys.
IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, PCC = Pearsons correlation coefficient, 

SCC = Spearmans correlation coefficient, UUO = unilateral ureteral obstruction. 
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Figure 8. Automated segmentation of kidneys from various species. 
Representative pictures illustrate the segmentation quality of the CNN in kidney tissue from rat (A-A’’), pig 

(B-B’’), black bear (C-C’’) and marmoset (D-D’’). Predictions (A’, B’, C’, D’) depict different classes, while A’’-
D’’ display predictions on instance level for tubules. All classes are also correctly detected and segmented on 

human nephrectomy (E-E’’) as well as smaller human biopsy (F-F’’). 
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Supplementary Table 1. Glossary of technical terms. 

Term Description 
Ablation study Experiment with consecutively reduced input data. 

In more detail: A procedure where certain configurations of neural 
network architecture or training including modifications to data sets are 
changed to gain a better understanding of their importance and impact 
(mainly on overall performance). 

Border class ->Class comprising borders of structures. 
Example: The tubule’s border marked in 
red is assigned to the border class. 
In more detail: Artificial class representing 
the border of specific structures. In our 
application, we make use of a border 
class, that especially represents the 
tubular basement membrane, to separate 
tubular (as well as glomerular or arterial) instances from each other, 
allowing for instance-level analysis. 

Capacity Amount of ->parameters in a neural network. 
In more detail: A neural network consists of many trainable 
parameters. Its number represents the network’s capacity. It is also 
associated with its complexity, i.e. the degree of complexity of patterns 
the model is able to learn. Note that a neural network represents a 
mathematical function including input variables and parameters. Thus, 
the parameters are here defined in a mathematical way. 

Channel numbers Number of ->feature maps.  
Example: The channel number of the 
first, orange ->convolutional layer is 32. 
In more detail: In convolutional neural 
networks, input data is subsequently 
propagated through ->convolutional 
layers each producing multiple output 
->feature maps. Their number re-
presents the channel number of the layer. 

Class A group of structures. 
Example: All tubular structures belong to the “tubule”-class. 

Context-awareness Ability of a method to incorporate sufficient 
spatial neighborhood information for the 
assessment / prediction of a pixel.  
In more detail: The more spatial context 
is considered for pixel prediction, the 
more context-aware is a technique. In 
our case, our network provides sufficient 
spatial context even for pixel prediction 
at patch border. 

Convolutional layer Network layer performing convolutions to its input.  
Example: All green blocks represent such layers. 
In more detail: Such layers represent substantial 
components in CNNs. Convolutions are 
performed on input data resulting in multiple              
->feature maps. Convolutions are mainly specified based on the 
following ->parameters:  

32 

Pixel of interest 

Context/neighborhood 
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->kernel size, ->stride and ->padding.  
As exemplary shown on the right, a 
convolution (with 3x3 kernel size) slides 
over the image and outputs a single 
value for each 3x3 region. 

Cross-entropy loss Information-theoretical measure of the dissimilarity between network 
output and ->ground truth. 
In more detail: A commonly used ->loss function when training 
segmentation or classification networks. The Cross-entropy loss (CE) 
is based on information theory and measures the difference between 
a target probability distribution (represented by ground truth 
annotations) and an estimated one (represented by model 
predictions). Its values range between 0 and 1. The smaller the loss, 
the higher the similarity. Thus, a perfect overlap results in a value of 
zero. 

Dice loss / Dice score The Dice score measures the similarity between network prediction 
and ->ground truth based on their spatial overlap. 
In more detail: The Dice score is a metric to quantify the similarity 

between two binary segmentations 𝑋 and 𝑌 as follows: 𝐷𝑆𝐶 =  
ଶ |௑∩௒|

|௑|ା|௒|
. 

In other words, it roughly quantifies the amount of spatial overlap 
between both segmentations. For multi-label evaluation, binary 
representations of ground truth and prediction are compared for each 
class. Besides, the Dice loss is represented by the Dice score in the 
following way: 𝐷𝑆𝐶௟௢௦௦ = 1 − 𝐷𝑆𝐶, since neural networks require               
->loss functions instead of score functions.  

Ensembling ->Regularization technique to improve performance. 
In more detail: Instead of one single learning algorithm, multiple neural 
networks are differently trained, and thus form different predictors to 
reduce prediction variance. Final results are performed by merging the 
predictions of all networks. 

Epoch An epoch ends when all training samples have been fed through the 
network once. 

Feature An individual, measurable property, e.g. glomerular size is a feature of 
the glomerulus. 

Feature map Spatially arranged features that are generated by applying filters to the 
convolutional layer input, i.e. the input image or feature map outputs 
from the prior layer. 
Example: A convolutional filter has been applied to the left image 
resulting in a two-dimensional feature map highlighting its edges. 

  
Ground Truth Target data we expect the network to predict. We annotate and classify 

structures according to our renal ->class definitions in Supp. Table 2 
and consider these annotations and classifications to correspond to 
reality, thus representing the ground truth. 
Example: Ground truth image of the left image is shown right. 
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Hyperparameter Special ->parameters to control e.g. the learning process or 

architecture of the deep learning model. They are determined by the 
experimentator before as well as dynamically during training. 
Examples are the amount of ->epochs or the ->kernel size. 

Image segmentation Decomposition of an image into structures of interest. 
Example: Segmentation of a tubule. 

 
Instance A single structure of a class. Example: All 

tubular instances are differently colored 
(Image from Supp. Fig. 5, third column). 
 

Instance normalization ->Regularization technique applied in neural networks.  
In more detail: In contrast to the widely used batch normalization, 
instance normalization normalizes each ->feature map independently 
providing zero mean and unit variance. 

Kernel size  Specifies the size of a convolutional filter that is slid over the image. 
Loss function A mathematical function measuring the dissimilarity between network 

prediction and ->ground truth. 
In more detail: To train a neural network, a (differentiable) 
mathematical loss function representing a metric to measure the 
dissimilarity between prediction and ground-truth is required. During 
training, the network is consecutively optimized (with respect to the 
loss function) to lower the loss and thus to improve the similarity 
between prediction and ground-truth. 

Negative slope ->Hyperparameter in the mathematical LeakyReLU function. 
In more detail: The LeakyReLU function is defined as follows: 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) =  ൜
𝑥,    𝑥 ≥ 0                                           
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 ∗ 𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Thus, the 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒-hyperparameter specifies the slope of the 
LeakyReLU function for negative inputs, i.e. 𝑥 < 0. Most commonly, 
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 = 0.01 is chosen by the experimentator. 

Padding An operation within convolutional layers to artificially enlarge the input 
data.  
In more detail: Specifies how much the input data is spatially padded 
around it. Padding an image with zeros exemplary means that zero 
values are added around it. Padding is used to counteract shrinkage 
of the input data caused by convolution. 
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Example: 
         without padding                        with padding 
 

 
 
 
 
 

Parameter Components of a (deep learning) system that fully define and 
characterize the system.  
In more detail: During network training, its trainable parameters are 
optimized. After training, all network parameters (trainable and non-
trainable) are held constant, and the model is then used for prediction 
computation. 

Receptive field The prediction of a single output pixel only depends on a certain region 
of the input image. This region represents its receptive field. The size 
depends on the architecture of the network. 

Reduce-On-Plateau Technique to schedule the learning rate. 
In more detail: The learning rate represents an important                                
->hyperparameter in neural networks that controls the speed of 
learning. This learning rate scheduler reduces the learning rate by a 
specific factor each time when the validation error has not decreased 
for a certain number of epochs. 

Regularization Regularization techniques are employed to improve network’s 
generalization, i.e. reducing the error on test data. At the expense of 
increased training error, such techniques impose particularly designed 
constraints to the neural network preventing them to solely memorize 
the training data without having learned the underlying patterns. 

ReLU Stands for rectified linear unit and represents a mathematical function 

defined as follows: 𝑅𝑒𝐿𝑈(𝑥) =  ቄ
𝑥,    𝑥 ≥ 0         
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

  

Robustness Describes the extent of input variability (e.g. in tissue morphology, 
staining, slide thickness, laboratory) an algorithm can cope with. 
Generally, it is measured by performance evaluation on those 
variabilities (usually held-out as in the current study). 

Stride An operation within convolutional layers to specify how many pixels 
the convolutional filter (or: ->kernel) is moved when slid over the 
image. 
Example: 
stride of “1” (shift of 1 pixel)             stride of “2” (shift of 2 pixels). 
 
 
 
 
 

Test-time augmentation ->Regularization technique to improve performance. 
In more detail: Regularization technique that forwards flipped versions 
of the input through the network and averages their respectively back-
flipped predictions to yield the final prediction. In contrast to                          
->ensembling, just a single network/predictor is used to perform 
multiple estimations. 
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Transposed convolutions The conventional convolution provides a many-to-one relationship 
between input and output, since many input pixels are connected to a 
single value in the output. In 
contrast, transposed convolutions 
make use of a reversed pixel 
connectivity (in backward 
direction) providing a one-to-many 
relationship. Thus, it is designed 
for image ->upsampling. 

Upsampling Expansion or increase of the spatial resolution of an image. 
In more detail: Upsampling can be exemplarily performed by pixel 
interpolation meaning that new pixel values can be estimated between 
pixels by using their neighborhood, e.g. by averaging neighboring 
pixels values (ultimately yielding a denser image grid). The picture in  
->transposed convolutions exemplarily shows an upsampling of an 
artificial image. 

 

 

 

 

 

 

 

 

 

CNN 

CNN 

CNN 

CNN 

Backflip 

Backflip 

Backflip 

Average 
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Supplementary Table 2. Criteria for definition of classes. 

Class  Criteria 

Full glomerulus 
- annotation along Bowman’s capsule 
- if cross section showed urinary (or vascular) pole, glomerulus was 

encircled in round/oval shape 

Glomerular tuft 

- subclass of the full glomerulus class 
- annotation of glomerular tuft only (including podocytes)  
- for glomerular lesions: extracapillary proliferates (= crescents), 

parietal epithelial cells which migrated onto the tuft or tip lesions 
were not included 

Tubule - annotation along, but excluding, the basement membrane 

Artery - annotation of all arteries, including all arterial branches to arterioles 
- at least one visible vascular smooth muscle cell layer required  

Arterial lumen - subclass of the artery class 
- annotation of lumen only, excluding also the endothelium  

Vein  

- annotation of large “white” areas  
- only the lumen, i.e. the “white” area was annotated 
- for veins the definition of larger vessels next to arteries with a 

minimal diameter of 30µm  
- class includes non-tissue background and renal pelvis 

 

  

Page 61 of 99

ScholarOne support: 888-503-1050

Journal of the American Society of NEPHROLOGY

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Supplementary Table 3. Quantitative information on ground truth data. 

Model / 

Species 

Number of 

annotated 

patches / WSI 

Train / val / test 

split of annotated 

patches  

Train / val / test 

split of partially 

annotated WSI 

Total number of instance annotations 

Σ full 

glom. 

glom. 

tuft 
tubule artery 

arterial 

lumen 
vein 

Healthy 

mouse 

820 / 41 600 / 60 / 160 30 / 3 / 8 835 804 18536 1107 1416 609 23307 

UUO 300 / 15 220 / 20 / 60 11 / 1 / 3 225 221 6795 301 314 177 8033 

IRI 300 / 15 220 / 20 / 60 11 / 1 / 3 242 242 7555 354 397 102 8892 

Adenine 300 / 15 220 / 20 / 60 11 / 1 / 3 257 256 5995 342 384 111 7345 

Alport 300 / 15 220 / 20 / 60 11 / 1 / 3 413 368 7137 361 383 83 8745 

NTN 300 / 15 220 / 20 / 60 11 / 1 / 3 247 237 5500 275 295 139 6693 

db/db 30 / 3 0 / 0 / 30 0 / 0 / 3 27 27 652 27 22 10 765 

Ext. UUO 30 / 3 0 / 0 / 30 0 / 0 / 3 46 43 879 42 27 8 1045 

Human 230 / 12 200 / 0 / 30 10 / 0 / 2 123 148 1958 125 145 40 2539 

Rat 80 / 8 50 / 0 / 30  5 / 0 / 3 56 59 1372 66 74 27 1654 

Pig 80 / 6 50 / 0 / 30 5 / 0 / 1 50 49 900 57 67 23 1146 

Marmoset 80 / 8 50 / 0 / 30 5 / 0 / 3 39 39 774 62 70 28 1012 

Black bear 80 / 8 50 / 0 / 30 5 / 0 / 3 51 51 1240 85 91 28 1546 

Σ 2930 / 164 2100 / 160 / 670 115 / 8 / 41 2611 2544 59293 3204 3685 1385 72722 

IRI = ischemia reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction, val = validation 
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Supplementary Table 2. Quantitative information on ground truth data. 

Model / 

Species 

Number of 

annotated 

Patches/WSI 

Total number of instance annotations 

Σ full 

glomerulus 

glomerular 

tuft 
tubule artery 

arterial 

lumen 
Vein 

Healthy 

mouse 

820 / 41 

 
835 804 18536 1107 1416 609 23307 

UUO 300 / 15 225 221 6795 301 314 177 8033 

IRI 300 / 15 242 242 7555 354 397 102 8892 

Adenine 300 / 15 257 256 5995 342 384 111 7345 

Alport 300 / 15 413 368 7137 361 383 83 8745 

NTN 300 / 15 247 237 5500 275 295 139 6693 

Human 200 / 10 108 126 1678 96 115 31 2154 

Rat 50 / 5 32 31 895 33 34 14 1039 

Pig 50 / 5 34 34 616 38 46 12 780 

Marmoset 50 / 5 24 24 535 32 38 14 667 

Black bear 50 / 5 30 32 689 49 55 13 868 

Σ 2720 / 146 2447 2375 55931 2988 3477 1305 68523 

IRI = ischemia reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction 
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Supplementary Table 4. Architecture of our CNN. 

Network Architecture Output size 

Input image layer 640 x 640 x 3 

Conv2d(i: 3, o: 32, k: 3, s: 1, p: 1) + IN(o: 32) + LeakyReLU(sl: 0.01) 640 x 640 x 32 

Conv2d(i: 32, o: 32, k: 3, s: 1, p: 1) + IN(o: 32) + LeakyReLU(sl: 0.01) 640 x 640 x 32 

MaxPool2d(k: 2, s: 2, p: 0) 320 x 320 x 32 

Conv2d(i: 32, o: 64, k: 3, s: 1, p: 1) + IN(o: 64) + LeakyReLU(sl: 0.01) 320 x 320 x 64 

Conv2d(i: 64, o: 64, k: 3, s: 1, p: 1) + IN(o: 64) + LeakyReLU(sl: 0.01) 320 x 320 x 64 

MaxPool2d(k: 2, s: 2, p: 0) 160 x 160 x 64 

Conv2d(i: 64, o: 128, k: 3, s: 1, p: 1) + IN(o: 128) + LeakyReLU(sl: 0.01) 160 x 160 x 128 

Conv2d(i: 128, o: 128, k: 3, s: 1, p: 1) + IN(o: 128) + LeakyReLU(sl: 0.01) 160 x 160 x 128 

MaxPool2d(k: 2, s: 2, p: 0) 80 x 80 x 128 

Conv2d(i: 128, o: 256, k: 3, s: 1, p: 1) + IN(o: 256) + LeakyReLU(sl: 0.01) 80 x 80 x 256 

Conv2d(i: 256, o: 256, k: 3, s: 1, p: 1) + IN(o: 256) + LeakyReLU(sl: 0.01) 80 x 80 x 256 

MaxPool2d(k: 2, s: 2, p: 0) 40 x 40 x 256 

Conv2d(i: 256, o: 512, k: 3, s: 1, p: 1) + IN(o: 512) + LeakyReLU(sl: 0.01) 40 x 40 x 512 

Conv2d(i: 512, o: 512, k: 3, s: 1, p: 1) + IN(o: 512) + LeakyReLU(sl: 0.01) 40 x 40 x 512 

MaxPool2d(k: 2, s: 2, p: 0) 20 x 20 x 512 

Conv2d(i: 512, o: 1024, k: 3, s: 1, p: 1) + IN(o: 1024) + LeakyReLU(sl: 0.01) 20 x 20 x 1024 

Conv2d(i: 1024, o: 1024, k: 3, s: 1, p: 1) + IN(o: 1024) + LeakyReLU(sl: 0.01) 20 x 20 x 1024 

ConvTranspose2d(i: 1024, o: 1024, k: 2, s: 2) 40 x 40 x 1024 

Conv2d(i: 1536, o: 512, k: 3, s: 1, p: 0) + IN(o: 512) + LeakyReLU(sl: 0.01) 38 x 38 x 512 

Conv2d(i: 512, o: 512, k: 3, s: 1, p: 0) + IN(o: 512) + LeakyReLU(sl: 0.01) 36 x 36 x 512 

ConvTranspose2d(i: 512, o: 512, k: 2, s: 2) 72 x 72 x 512 

Conv2d(i: 768, o: 256, k: 3, s: 1, p: 0) + IN(o: 256) + LeakyReLU(sl: 0.01) 70 x 70 x 256 

Conv2d(i: 256, o: 256, k: 3, s: 1, p: 0) + IN(o: 256) + LeakyReLU(sl: 0.01) 68 x 68 x 256 

ConvTranspose2d(i: 256, o: 256, k: 2, s: 2) 136 x 136 x 256 

Conv2d(i: 384, o: 128, k: 3, s: 1, p: 0) + IN(o: 128) + LeakyReLU(sl: 0.01) 134 x 134 x 128 

Conv2d(i: 128, o: 128, k: 3, s: 1, p: 0) + IN(o: 128) + LeakyReLU(sl: 0.01) 132 x 132 x 128 

ConvTranspose2d(i: 128, o: 128, k: 2, s: 2) 264 x 264 x 128 

Conv2d(i: 192, o: 64, k: 3, s: 1, p: 0) + IN(o: 64) + LeakyReLU(sl: 0.01) 262 x 262 x 64 

Conv2d(i: 64, o: 64, k: 3, s: 1, p: 0) + IN(o: 64) + LeakyReLU(sl: 0.01) 260 x 260 x 64 

ConvTranspose2d(i: 64, o: 64, k: 2, s: 2) 520 x 520 x 64 

Conv2d(i: 96, o: 32, k: 3, s: 1, p: 0) + IN(o: 32) + LeakyReLU(sl: 0.01) 518 x 518 x 32 

Conv2d(i: 32, o: 32, k: 3, s: 1, p: 0) + IN(o: 32) + LeakyReLU(sl: 0.01) 516 x 516 x 32 

Conv2d(i: 32, o: 8, k: 1, s: 1, p: 0)  516 x 516 x 8 

Conv2d = two-dimensional convolutional layer, IN = instance normalization, i = #input layers, o = 

#output layers, k = kernel size, s = stride, p = padding, sl = negative slope 
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Supplementary Table 5. Performance comparison of our model, its unmodified 
variant vanilla u-net, and state-of-the-art context-encoder. 

Shown are mean object-level dice scores for our model / the unmodified variant vanilla u-net / state-of-

the-art context-encoder. The highest Score is marked in bold. * p < 0.05 vs. vanilla u-net and ° p < 

0.05 vs. context-encoder. 

Mouse 

Model 

Segmentation performance of our model / vanilla u-net / context-encoder 

full glomerulus glomerular tuft tubule artery arterial lumen vein 

Healthy 96.5 / 95.6 / 96.2 93.8 / 93.8 / 93.5   93.3 / 92.9 / 93.0 88.1 / 87.4 / 87.8 80.3 / 80.0 / 80.6 94.3 / 88.9 / 92.0 

UUO 97.5 / 95.2 / 95.3 95.6 / 93.9 / 94.5 90.8 / 90.8 / 91.3 82.3 / 81.2 / 82.6 75.0 / 72.9 / 73.7 97.6 / 95.4 / 94.6 

IRI 96.0 / 97.7 / 95.7 95.4 / 94.7 / 94.4 90.2 / 89.1 / 89.9 79.1 / 74.7 / 74.2 73.5 / 62.3 / 61.7 97.7 / 86.7 / 87.0 

Adenine 98.8 / 94.1 / 98.5 97.2 / 94.1 / 97.1 93.0 / 92.0 / 92.8 87.9 / 83.3 / 83.2 80.9 / 72.7 / 76.9 93.6 / 87.6 / 96.7 

Alport 94.7 / 95.5 / 96.3 91.3 / 86.4 / 87.6 90.6 / 89.7 / 89.3 80.3 / 74.2 / 72.0 81.1 / 69.9 / 65.5 89.2 / 83.2 / 81.7 

NTN 95.5 / 91.5 / 96.3 94.8 / 93.9 / 93.9 93.2 / 92.5 / 92.9 86.8 / 82.7 / 83.9 78.2 / 73.9 / 79.1 92.8 / 91.8 / 95.4 

∅ 96.4* / 94.0 / 96.3 94.2* / 92.6 / 93.0 92.0* / 91.4 / 91.7 85.3*° / 82.8 / 82.9 79.1*° / 75.9 / 76.1 94.3* / 90.4 / 92.7 

IRI = ischemia reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction 
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Supp. Fig. 1. Annotation procedure. 
A representative picture of a PAS stained mouse kidney section (A) and an overlay 
with manual annotations for six classes (A’). The annotation of the “glomerular tuft” 
(blue (B)) included the capillary tuft, the mesangium and podocytes. A “full glomerulus” 
(green (C)) was annotated along bowman’s capsule and included the tuft, bowman’s 
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space and parietal epithelial cells. The glomerular tuft was always a subclass of the 
full glomerulus. A full glomerulus always had a round or oval shape, this determined 
the separation from the proximal tubule (arrow). Tubules (red (D) were annotated along 
(but excluding) the tubular basement membrane, tangentially cut tubules without 
cytoplasm were excluded. The “arterial lumen” (yellow (D)) was always a subclass of 
the “artery” class (magenta (F)). Veins, background and renal pelvis were big “white” 
areas without tissue (cyan (G)). From the first manual annotations, we predicted initial 
pre-annotations for 20 patches per WSI and loaded them into Qupath for manual 
corrections facilitating annotation effort (H). 
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Supp. Fig. 2. Challenging morphology for manual and automated annotations. 
(A-A’’) show examples of glomeruli in PAS stained murine kidney sections. On a 
sectional plane close to the vascular or urinary pole it was difficult to discriminate 
between glomerular tuft and arterioles (arrow, A), or the glomerular tuft and parietal 
epithelial cells or tubular epithelial cells (arrows, A’,A’’). Sometimes the tubular 
basement membrane appeared discontinuous (arrows in B, B’). The distinction of 
medial layers of arteries was harder when vessels run side by side (arrow, C). (D-D’’) 
show medulla of murine kidneys with the network of capillaries and the tubular system, 
which in some cases was not easy to discriminate. 
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Supp. Fig. 3. Segmentation of WSI of UUO, Alport and NTN kidneys. 
CNN generated segmentation predictions on a whole slide image (WSI) of an UUO 
(A), Alport (B) and NTN (C) mouse kidney. All six classes, were precisely segmented. 
NTN = nephrotoxic nephropathy, UUO = unilateral ureteral obstruction.  
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Supp. Fig. 4. Quantitative segmentation performance in murine NTN and adenine 
kidneys. 
Representative PAS pictures and the corresponding segmentation prediction 
generated by our CNN for a murine NTN (A) and adenine kidney (B). Instance 
segmentation accuracy is shown by dice scores for each class in both models (A’-B’). 
Data are presented in Box plots with median, quartiles and whiskers. NTN = 
nephrotoxic nephropathy. 
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Supp. Fig. 5. Automated segmentation in the medulla of murine kidney sections. 
Representative PAS pictures and corresponding overlays with segmentation 
predictions showing either the different classes or every single instances for the 
medulla of murine healthy (A-A’’), UUO (B-B’’), IRI (C-C’’), adenine (D-D’’), Alport (E-
E’’) and NTN (F-F’’) kidneys. 
IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral 
ureteral obstruction.  
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Supp. Fig. 6. Examples of incorrectly segmented instancesmissclassifications.  
PAS photographs and prediction overlays show an incorrect separation of a “full 
glomerulus” and the connected proximal “tubule” (arrow in A, A’), a glomerular tuft that 
was inaccurately segmented with projections into the crescent (arrow in B, B’) and an 
incompletely segmented tubule due to extensive necrosis (arrow in C,C’). Another 
example shows a strongly dilated tubule which is was incorrectly classified as full 
glomerulus and arterial lumen (arrowheads in D,D’) and missing segmentations of 
atrophic tubules (arrows in D,D’).  
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Supp. Fig. 7. Relation between amount of training data and detection 
performance.  
The detection performance for all six classes in healthy (A), UUO (B), IRI (C), adenine 
(D), Alport (E) and NTN (F) was plotted against the amount of total data used for CNN 
training. 
IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral 
ureteral obstruction. 
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Supp. Fig. 8. Comparison between our full CNN and its variants independently 
trained on single models.the fully trained CNN and its variants. 
(A) Segmentation performance shown as instance dice scores for all six classes in 
healthy kidneyswas compared on our healthy kidney test data between our fully trained 
CNN trained on all training data (blue) and its variants that havehas been solely trained 
with data from healthy kidneys (yellow). (B) The same comparison is shown for the 
UUO, in which the network variant was exclusively trained with annotations from UUO 
kidneys. Analogously, analyses are performed for IRI (C), adenine (D), Alport (E) and 
NTN (F). 
Data are presented in Box plots with median, quartiles and whiskers. IRI = ischemia-
reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 
obstruction. 
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Supp. Fig. 9. Segmentation of non-trained and external murine kidney slides. 
Representative pictures show segmentation results for cortex (A-A’’) and medulla (B-
B’’) for kidneys from db/db mice fed with high fat western diet. Predictions (A’, B’) depict 
different classes, while A’’ and B’’ display segmentation on single instance level. The 
CNN also accurately segments cortex (C-C’’) and medulla (D-D’’) from PAS slides of 
an external UUO cohort. Predictions (C’, D’) depict different classes, while C’’ and D’’ 
display segmentation on single instance level. 
UUO = unilateral ureteral obstruction. 
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Supp. Fig. 10. Automated segmentation of renal medulla in different species. 
Representative PAS pictures and the corresponding overlays for segmentation 
predictions showing either the different classes or every single instance for the medulla 
of rat (A-A’’), pig (B-B’’), black bear (C-C’’), marmoset (D-D’’) and human (E-F’’) 
kidneys. Segmentation is accurate on human nephrectomy (E-E’’) as well as on biopsy 
specimens (F-F’’). 
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Supp. Fig. 11. Automated segmentation of human biopsies presenting with acute 
tubular damage. Representative PAS-pictures and the respective segmentation 
prediction overlays from cortex (A-B’’) and medulla (C-D’’) of human biopsies with 
acute tubular damage.  
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Supplementary Table 1. Glossary of technical terms. 

Term Description 
Ablation study Experiment with consecutively reduced input data. 

In more detail: A procedure where certain configurations of neural 
network architecture or training including modifications to data sets are 
changed to gain a better understanding of their importance and impact 
(mainly on overall performance). 

Border class ->Class comprising borders of structures. 
Example: The tubule’s border marked in 
red is assigned to the border class. 
In more detail: Artificial class representing 
the border of specific structures. In our 
application, we make use of a border 
class, that especially represents the 
tubular basement membrane, to separate 
tubular (as well as glomerular or arterial) instances from each other, 
allowing for instance-level analysis. 

Capacity Amount of ->parameters in a neural network. 
In more detail: A neural network consists of many trainable 
parameters. Its number represents the network’s capacity. It is also 
associated with its complexity, i.e. the degree of complexity of patterns 
the model is able to learn. Note that a neural network represents a 
mathematical function including input variables and parameters. Thus, 
the parameters are here defined in a mathematical way. 

Channel numbers Number of ->feature maps.  
Example: The channel number of the 
first, orange ->convolutional layer is 32. 
In more detail: In convolutional neural 
networks, input data is subsequently 
propagated through ->convolutional 
layers each producing multiple output 
->feature maps. Their number re-
presents the channel number of the layer. 

Class A group of structures. 
Example: All tubular structures belong to the “tubule”-class. 

Context-awareness Ability of a method to incorporate sufficient 
spatial neighborhood information for the 
assessment / prediction of a pixel.  
In more detail: The more spatial context 
is considered for pixel prediction, the 
more context-aware is a technique. In 
our case, our network provides sufficient 
spatial context even for pixel prediction 
at patch border. 

Convolutional layer Network layer performing convolutions to its input.  
Example: All green blocks represent such layers. 
In more detail: Such layers represent substantial 
components in CNNs. Convolutions are 
performed on input data resulting in multiple              
->feature maps. Convolutions are mainly specified based on the 
following ->parameters:  

32 

Pixel of interest 

Context/neighborhood 
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->kernel size, ->stride and ->padding.  
As exemplary shown on the right, a 
convolution (with 3x3 kernel size) slides 
over the image and outputs a single 
value for each 3x3 region. 

Cross-entropy loss Information-theoretical measure of the dissimilarity between network 
output and ->ground truth. 
In more detail: A commonly used ->loss function when training 
segmentation or classification networks. The Cross-entropy loss (CE) 
is based on information theory and measures the difference between 
a target probability distribution (represented by ground truth 
annotations) and an estimated one (represented by model 
predictions). Its values range between 0 and 1. The smaller the loss, 
the higher the similarity. Thus, a perfect overlap results in a value of 
zero. 

Dice loss / Dice score The Dice score measures the similarity between network prediction 
and ->ground truth based on their spatial overlap. 
In more detail: The Dice score is a metric to quantify the similarity 

between two binary segmentations 𝑋 and 𝑌 as follows: 𝐷𝑆𝐶 =  
ଶ |௑∩௒|

|௑|ା|௒|
. 

In other words, it roughly quantifies the amount of spatial overlap 
between both segmentations. For multi-label evaluation, binary 
representations of ground truth and prediction are compared for each 
class. Besides, the Dice loss is represented by the Dice score in the 
following way: 𝐷𝑆𝐶௟௢௦௦ = 1 − 𝐷𝑆𝐶, since neural networks require               
->loss functions instead of score functions.  

Ensembling ->Regularization technique to improve performance. 
In more detail: Instead of one single learning algorithm, multiple neural 
networks are differently trained, and thus form different predictors to 
reduce prediction variance. Final results are performed by merging the 
predictions of all networks. 

Epoch An epoch ends when all training samples have been fed through the 
network once. 

Feature An individual, measurable property, e.g. glomerular size is a feature of 
the glomerulus. 

Feature map Spatially arranged features that are generated by applying filters to the 
convolutional layer input, i.e. the input image or feature map outputs 
from the prior layer. 
Example: A convolutional filter has been applied to the left image 
resulting in a two-dimensional feature map highlighting its edges. 

  
Ground Truth Target data we expect the network to predict. We annotate and classify 

structures according to our renal ->class definitions in Supp. Table 2 
and consider these annotations and classifications to correspond to 
reality, thus representing the ground truth. 
Example: Ground truth image of the left image is shown right. 

Page 81 of 99

ScholarOne support: 888-503-1050

Journal of the American Society of NEPHROLOGY

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  
Hyperparameter Special ->parameters to control e.g. the learning process or 

architecture of the deep learning model. They are determined by the 
experimentator before as well as dynamically during training. 
Examples are the amount of ->epochs or the ->kernel size. 

Image segmentation Decomposition of an image into structures of interest. 
Example: Segmentation of a tubule. 

 
Instance A single structure of a class. Example: All 

tubular instances are differently colored 
(Image from Supp. Fig. 5, third column). 
 

Instance normalization ->Regularization technique applied in neural networks.  
In more detail: In contrast to the widely used batch normalization, 
instance normalization normalizes each ->feature map independently 
providing zero mean and unit variance. 

Kernel size  Specifies the size of a convolutional filter that is slid over the image. 
Loss function A mathematical function measuring the dissimilarity between network 

prediction and ->ground truth. 
In more detail: To train a neural network, a (differentiable) 
mathematical loss function representing a metric to measure the 
dissimilarity between prediction and ground-truth is required. During 
training, the network is consecutively optimized (with respect to the 
loss function) to lower the loss and thus to improve the similarity 
between prediction and ground-truth. 

Negative slope ->Hyperparameter in the mathematical LeakyReLU function. 
In more detail: The LeakyReLU function is defined as follows: 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) =  ൜
𝑥,    𝑥 ≥ 0                                           
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 ∗ 𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Thus, the 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒-hyperparameter specifies the slope of the 
LeakyReLU function for negative inputs, i.e. 𝑥 < 0. Most commonly, 
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 = 0.01 is chosen by the experimentator. 

Padding An operation within convolutional layers to artificially enlarge the input 
data.  
In more detail: Specifies how much the input data is spatially padded 
around it. Padding an image with zeros exemplary means that zero 
values are added around it. Padding is used to counteract shrinkage 
of the input data caused by convolution. 
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Example: 
         without padding                        with padding 
 

 
 
 
 
 

Parameter Components of a (deep learning) system that fully define and 
characterize the system.  
In more detail: During network training, its trainable parameters are 
optimized. After training, all network parameters (trainable and non-
trainable) are held constant, and the model is then used for prediction 
computation. 

Receptive field The prediction of a single output pixel only depends on a certain region 
of the input image. This region represents its receptive field. The size 
depends on the architecture of the network. 

Reduce-On-Plateau Technique to schedule the learning rate. 
In more detail: The learning rate represents an important                                
->hyperparameter in neural networks that controls the speed of 
learning. This learning rate scheduler reduces the learning rate by a 
specific factor each time when the validation error has not decreased 
for a certain number of epochs. 

Regularization Regularization techniques are employed to improve network’s 
generalization, i.e. reducing the error on test data. At the expense of 
increased training error, such techniques impose particularly designed 
constraints to the neural network preventing them to solely memorize 
the training data without having learned the underlying patterns. 

ReLU Stands for rectified linear unit and represents a mathematical function 

defined as follows: 𝑅𝑒𝐿𝑈(𝑥) =  ቄ
𝑥,    𝑥 ≥ 0         
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

  

Robustness Describes the extent of input variability (e.g. in tissue morphology, 
staining, slide thickness, laboratory) an algorithm can cope with. 
Generally, it is measured by performance evaluation on those 
variabilities (usually held-out as in the current study). 

Stride An operation within convolutional layers to specify how many pixels 
the convolutional filter (or: ->kernel) is moved when slid over the 
image. 
Example: 
stride of “1” (shift of 1 pixel)             stride of “2” (shift of 2 pixels). 
 
 
 
 
 

Test-time augmentation ->Regularization technique to improve performance. 
In more detail: Regularization technique that forwards flipped versions 
of the input through the network and averages their respectively back-
flipped predictions to yield the final prediction. In contrast to                          
->ensembling, just a single network/predictor is used to perform 
multiple estimations. 
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Transposed convolutions The conventional convolution provides a many-to-one relationship 
between input and output, since many input pixels are connected to a 
single value in the output. In 
contrast, transposed convolutions 
make use of a reversed pixel 
connectivity (in backward 
direction) providing a one-to-many 
relationship. Thus, it is designed 
for image ->upsampling. 

Upsampling Expansion or increase of the spatial resolution of an image. 
In more detail: Upsampling can be exemplarily performed by pixel 
interpolation meaning that new pixel values can be estimated between 
pixels by using their neighborhood, e.g. by averaging neighboring 
pixels values (ultimately yielding a denser image grid). The picture in  
->transposed convolutions exemplarily shows an upsampling of an 
artificial image. 

 

 

 

 

 

 

 

 

 

CNN 

CNN 

CNN 

CNN 

Backflip 

Backflip 

Backflip 

Average 
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Supplementary Table 2. Criteria for definition of classes. 

Class  Criteria 

Full glomerulus 
- annotation along Bowman’s capsule 
- if cross section showed urinary (or vascular) pole, glomerulus was 

encircled in round/oval shape 

Glomerular tuft 

- subclass of the full glomerulus class 
- annotation of glomerular tuft only (including podocytes)  
- for glomerular lesions: extracapillary proliferates (= crescents), 

parietal epithelial cells which migrated onto the tuft or tip lesions 
were not included 

Tubule - annotation along, but excluding, the basement membrane 

Artery - annotation of all arteries, including all arterial branches to arterioles 
- at least one visible vascular smooth muscle cell layer required  

Arterial lumen - subclass of the artery class 
- annotation of lumen only, excluding also the endothelium  

Vein  

- annotation of large “white” areas  
- only the lumen, i.e. the “white” area was annotated 
- for veins the definition of larger vessels next to arteries with a 

minimal diameter of 30µm  
- class includes non-tissue background and renal pelvis 
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Supplementary Table 3. Quantitative information on ground truth data. 

Model / 

Species 

Number of 

annotated 

patches / WSI 

Train / val / test 

split of annotated 

patches  

Train / val / test 

split of partially 

annotated WSI 

Total number of instance annotations 

Σ full 

glom. 

glom. 

tuft 
tubule artery 

arterial 

lumen 
vein 

Healthy 

mouse 

820 / 41 600 / 60 / 160 30 / 3 / 8 835 804 18536 1107 1416 609 23307 

UUO 300 / 15 220 / 20 / 60 11 / 1 / 3 225 221 6795 301 314 177 8033 

IRI 300 / 15 220 / 20 / 60 11 / 1 / 3 242 242 7555 354 397 102 8892 

Adenine 300 / 15 220 / 20 / 60 11 / 1 / 3 257 256 5995 342 384 111 7345 

Alport 300 / 15 220 / 20 / 60 11 / 1 / 3 413 368 7137 361 383 83 8745 

NTN 300 / 15 220 / 20 / 60 11 / 1 / 3 247 237 5500 275 295 139 6693 

db/db 30 / 3 0 / 0 / 30 0 / 0 / 3 27 27 652 27 22 10 765 

Ext. UUO 30 / 3 0 / 0 / 30 0 / 0 / 3 46 43 879 42 27 8 1045 

Human 230 / 12 200 / 0 / 30 10 / 0 / 2 123 148 1958 125 145 40 2539 

Rat 80 / 8 50 / 0 / 30  5 / 0 / 3 56 59 1372 66 74 27 1654 

Pig 80 / 6 50 / 0 / 30 5 / 0 / 1 50 49 900 57 67 23 1146 

Marmoset 80 / 8 50 / 0 / 30 5 / 0 / 3 39 39 774 62 70 28 1012 

Black bear 80 / 8 50 / 0 / 30 5 / 0 / 3 51 51 1240 85 91 28 1546 

Σ 2930 / 164 2100 / 160 / 670 115 / 8 / 41 2611 2544 59293 3204 3685 1385 72722 

IRI = ischemia reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction, val = validation 
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Supplementary Table 4. Architecture of our CNN. 

Network Architecture Output size 

Input image layer 640 x 640 x 3 

Conv2d(i: 3, o: 32, k: 3, s: 1, p: 1) + IN(o: 32) + LeakyReLU(sl: 0.01) 640 x 640 x 32 

Conv2d(i: 32, o: 32, k: 3, s: 1, p: 1) + IN(o: 32) + LeakyReLU(sl: 0.01) 640 x 640 x 32 

MaxPool2d(k: 2, s: 2, p: 0) 320 x 320 x 32 

Conv2d(i: 32, o: 64, k: 3, s: 1, p: 1) + IN(o: 64) + LeakyReLU(sl: 0.01) 320 x 320 x 64 

Conv2d(i: 64, o: 64, k: 3, s: 1, p: 1) + IN(o: 64) + LeakyReLU(sl: 0.01) 320 x 320 x 64 

MaxPool2d(k: 2, s: 2, p: 0) 160 x 160 x 64 

Conv2d(i: 64, o: 128, k: 3, s: 1, p: 1) + IN(o: 128) + LeakyReLU(sl: 0.01) 160 x 160 x 128 

Conv2d(i: 128, o: 128, k: 3, s: 1, p: 1) + IN(o: 128) + LeakyReLU(sl: 0.01) 160 x 160 x 128 

MaxPool2d(k: 2, s: 2, p: 0) 80 x 80 x 128 

Conv2d(i: 128, o: 256, k: 3, s: 1, p: 1) + IN(o: 256) + LeakyReLU(sl: 0.01) 80 x 80 x 256 

Conv2d(i: 256, o: 256, k: 3, s: 1, p: 1) + IN(o: 256) + LeakyReLU(sl: 0.01) 80 x 80 x 256 

MaxPool2d(k: 2, s: 2, p: 0) 40 x 40 x 256 

Conv2d(i: 256, o: 512, k: 3, s: 1, p: 1) + IN(o: 512) + LeakyReLU(sl: 0.01) 40 x 40 x 512 

Conv2d(i: 512, o: 512, k: 3, s: 1, p: 1) + IN(o: 512) + LeakyReLU(sl: 0.01) 40 x 40 x 512 

MaxPool2d(k: 2, s: 2, p: 0) 20 x 20 x 512 

Conv2d(i: 512, o: 1024, k: 3, s: 1, p: 1) + IN(o: 1024) + LeakyReLU(sl: 0.01) 20 x 20 x 1024 

Conv2d(i: 1024, o: 1024, k: 3, s: 1, p: 1) + IN(o: 1024) + LeakyReLU(sl: 0.01) 20 x 20 x 1024 

ConvTranspose2d(i: 1024, o: 1024, k: 2, s: 2) 40 x 40 x 1024 

Conv2d(i: 1536, o: 512, k: 3, s: 1, p: 0) + IN(o: 512) + LeakyReLU(sl: 0.01) 38 x 38 x 512 

Conv2d(i: 512, o: 512, k: 3, s: 1, p: 0) + IN(o: 512) + LeakyReLU(sl: 0.01) 36 x 36 x 512 

ConvTranspose2d(i: 512, o: 512, k: 2, s: 2) 72 x 72 x 512 

Conv2d(i: 768, o: 256, k: 3, s: 1, p: 0) + IN(o: 256) + LeakyReLU(sl: 0.01) 70 x 70 x 256 

Conv2d(i: 256, o: 256, k: 3, s: 1, p: 0) + IN(o: 256) + LeakyReLU(sl: 0.01) 68 x 68 x 256 

ConvTranspose2d(i: 256, o: 256, k: 2, s: 2) 136 x 136 x 256 

Conv2d(i: 384, o: 128, k: 3, s: 1, p: 0) + IN(o: 128) + LeakyReLU(sl: 0.01) 134 x 134 x 128 

Conv2d(i: 128, o: 128, k: 3, s: 1, p: 0) + IN(o: 128) + LeakyReLU(sl: 0.01) 132 x 132 x 128 

ConvTranspose2d(i: 128, o: 128, k: 2, s: 2) 264 x 264 x 128 

Conv2d(i: 192, o: 64, k: 3, s: 1, p: 0) + IN(o: 64) + LeakyReLU(sl: 0.01) 262 x 262 x 64 

Conv2d(i: 64, o: 64, k: 3, s: 1, p: 0) + IN(o: 64) + LeakyReLU(sl: 0.01) 260 x 260 x 64 

ConvTranspose2d(i: 64, o: 64, k: 2, s: 2) 520 x 520 x 64 

Conv2d(i: 96, o: 32, k: 3, s: 1, p: 0) + IN(o: 32) + LeakyReLU(sl: 0.01) 518 x 518 x 32 

Conv2d(i: 32, o: 32, k: 3, s: 1, p: 0) + IN(o: 32) + LeakyReLU(sl: 0.01) 516 x 516 x 32 

Conv2d(i: 32, o: 8, k: 1, s: 1, p: 0)  516 x 516 x 8 

Conv2d = two-dimensional convolutional layer, IN = instance normalization, i = #input layers, o = 

#output layers, k = kernel size, s = stride, p = padding, sl = negative slope 
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Supplementary Table 5. Performance comparison of our model, its unmodified 
variant vanilla u-net, and state-of-the-art context-encoder. 

Shown are mean object-level dice scores for our model / the unmodified variant vanilla u-net / state-of-

the-art context-encoder. The highest Score is marked in bold. * p < 0.05 vs. vanilla u-net and ° p < 

0.05 vs. context-encoder. 

Mouse 

Model 

Segmentation performance of our model / vanilla u-net / context-encoder 

full glomerulus glomerular tuft tubule artery arterial lumen vein 

Healthy 96.5 / 95.6 / 96.2 93.8 / 93.8 / 93.5   93.3 / 92.9 / 93.0 88.1 / 87.4 / 87.8 80.3 / 80.0 / 80.6 94.3 / 88.9 / 92.0 

UUO 97.5 / 95.2 / 95.3 95.6 / 93.9 / 94.5 90.8 / 90.8 / 91.3 82.3 / 81.2 / 82.6 75.0 / 72.9 / 73.7 97.6 / 95.4 / 94.6 

IRI 96.0 / 97.7 / 95.7 95.4 / 94.7 / 94.4 90.2 / 89.1 / 89.9 79.1 / 74.7 / 74.2 73.5 / 62.3 / 61.7 97.7 / 86.7 / 87.0 

Adenine 98.8 / 94.1 / 98.5 97.2 / 94.1 / 97.1 93.0 / 92.0 / 92.8 87.9 / 83.3 / 83.2 80.9 / 72.7 / 76.9 93.6 / 87.6 / 96.7 

Alport 94.7 / 95.5 / 96.3 91.3 / 86.4 / 87.6 90.6 / 89.7 / 89.3 80.3 / 74.2 / 72.0 81.1 / 69.9 / 65.5 89.2 / 83.2 / 81.7 

NTN 95.5 / 91.5 / 96.3 94.8 / 93.9 / 93.9 93.2 / 92.5 / 92.9 86.8 / 82.7 / 83.9 78.2 / 73.9 / 79.1 92.8 / 91.8 / 95.4 

∅ 96.4* / 94.0 / 96.3 94.2* / 92.6 / 93.0 92.0* / 91.4 / 91.7 85.3*° / 82.8 / 82.9 79.1*° / 75.9 / 76.1 94.3* / 90.4 / 92.7 

IRI = ischemia reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction 
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Supp. Fig. 1. Annotation procedure. 
A representative picture of a PAS stained mouse kidney section (A) and an overlay 
with manual annotations for six classes (A’). The annotation of the “glomerular tuft” 
(blue (B)) included the capillary tuft, the mesangium and podocytes. A “full glomerulus” 
(green (C)) was annotated along bowman’s capsule and included the tuft, bowman’s 
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space and parietal epithelial cells. The glomerular tuft was always a subclass of the 
full glomerulus. A full glomerulus always had a round or oval shape, this determined 
the separation from the proximal tubule (arrow). Tubules (red (D) were annotated along 
(but excluding) the tubular basement membrane, tangentially cut tubules without 
cytoplasm were excluded. The “arterial lumen” (yellow (D)) was always a subclass of 
the “artery” class (magenta (F)). Veins, background and renal pelvis were big “white” 
areas without tissue (cyan (G)). From the first manual annotations, we predicted initial 
pre-annotations for 20 patches per WSI and loaded them into Qupath for manual 
corrections facilitating annotation effort (H). 
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Supp. Fig. 2. Challenging morphology for manual and automated annotations. 
(A-A’’) show examples of glomeruli in PAS stained murine kidney sections. On a 
sectional plane close to the vascular or urinary pole it was difficult to discriminate 
between glomerular tuft and arterioles (arrow, A), or the glomerular tuft and parietal 
epithelial cells or tubular epithelial cells (arrows, A’,A’’). Sometimes the tubular 
basement membrane appeared discontinuous (arrows in B, B’). The distinction of 
medial layers of arteries was harder when vessels run side by side (arrow, C). (D-D’’) 
show medulla of murine kidneys with the network of capillaries and the tubular system, 
which in some cases was not easy to discriminate. 
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Supp. Fig. 3. Segmentation of WSI of UUO, Alport and NTN kidneys. 
CNN generated segmentation predictions on a whole slide image (WSI) of an UUO 
(A), Alport (B) and NTN (C) mouse kidney. All six classes, were precisely segmented. 
NTN = nephrotoxic nephropathy, UUO = unilateral ureteral obstruction.  
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Supp. Fig. 4. Quantitative segmentation performance in murine NTN and adenine 
kidneys. 
Representative PAS pictures and the corresponding segmentation prediction 
generated by our CNN for a murine NTN (A) and adenine kidney (B). Instance 
segmentation accuracy is shown by dice scores for each class in both models (A’-B’). 
Data are presented in Box plots with median, quartiles and whiskers. NTN = 
nephrotoxic nephropathy. 
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Supp. Fig. 5. Automated segmentation in the medulla of murine kidney sections. 
Representative PAS pictures and corresponding overlays with segmentation 
predictions showing either the different classes or every single instances for the 
medulla of murine healthy (A-A’’), UUO (B-B’’), IRI (C-C’’), adenine (D-D’’), Alport (E-
E’’) and NTN (F-F’’) kidneys. 
IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral 
ureteral obstruction.  
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Supp. Fig. 6. Examples of missclassifications.  
PAS photographs and prediction overlays show an incorrect separation of a “full 
glomerulus” and the connected proximal “tubule” (arrow in A, A’), a glomerular tuft that 
was inaccurately segmented with projections into the crescent (arrow in B, B’) and an 
incompletely segmented tubule due to extensive necrosis (arrow in C,C’). Another 
example shows a strongly dilated tubule which is was incorrectly classified as full 
glomerulus and arterial lumen (arrowheads in D,D’) and missing segmentations of 
atrophic tubules (arrows in D,D’).  
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Supp. Fig. 7. Relation between amount of training data and detection 
performance.  
The detection performance for all six classes in healthy (A), UUO (B), IRI (C), adenine 
(D), Alport (E) and NTN (F) was plotted against the amount of total data used for CNN 
training. 
IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral 
ureteral obstruction. 
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Supp. Fig. 8. Comparison between our full CNN and its variants independently 
trained on single models. 
(A) Segmentation performance shown as instance dice scores for all six classes was 
compared on our healthy kidney test data between our full CNN trained on all training 
data (blue) and its variant that has been solely trained with data from healthy kidneys 
(yellow). (B) The same comparison is shown for the UUO, in which the network variant 
was exclusively trained with annotations from UUO kidneys. Analogously, analyses are 
performed for IRI (C), adenine (D), Alport (E) and NTN (F). 
Data are presented in Box plots with median, quartiles and whiskers. IRI = ischemia-
reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 
obstruction. 
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Supp. Fig. 9. Segmentation of non-trained and external murine kidney slides. 
Representative pictures show segmentation results for cortex (A-A’’) and medulla (B-
B’’) for kidneys from db/db mice fed with high fat western diet. Predictions (A’, B’) depict 
different classes, while A’’ and B’’ display segmentation on single instance level. The 
CNN also accurately segments cortex (C-C’’) and medulla (D-D’’) from PAS slides of 
an external UUO cohort. Predictions (C’, D’) depict different classes, while C’’ and D’’ 
display segmentation on single instance level. 
UUO = unilateral ureteral obstruction. 
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Supp. Fig. 10. Automated segmentation of renal medulla in different species. 
Representative PAS pictures and the corresponding overlays for segmentation 
predictions showing either the different classes or every single instance for the medulla 
of rat (A-A’’), pig (B-B’’), black bear (C-C’’), marmoset (D-D’’) and human (E-F’’) 
kidneys. Segmentation is accurate on human nephrectomy (E-E’’) as well as on biopsy 
specimens (F-F’’). 
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Supp. Fig. 11. Automated segmentation of human biopsies presenting with acute 
tubular damage. Representative PAS-pictures and the respective segmentation 
prediction overlays from cortex (A-B’’) and medulla (C-D’’) of human biopsies with 
acute tubular damage.  
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