576 research outputs found

    DETERMINATION OF OPTIMIZATION WAYS OF RE-PROTHESIS USING VARIOUS SCHEMES GNATHOLOGICAL SUPPORT OF PATIENTS AT THE PREPARATORY STAGE TO THE ORTHOPEDIC CORRECTION OF PATIENTS WITH OCCLUSIVE IATROGENIC DISORDERS OF TOOTH-JAW APPARATUS

    Get PDF
    We brought to the light that one of the the most controversial issues is the moment of adaptation to reconstructive procedures. Often it becomes unclear which and in which order to use medical diagnostic equipment, to training for fixed prosthetic stages. Our studies make it possible to predict not only the treatment time, but the amount of occlusal adjustment in conjunction with the reconstruction of the position of the mandible.One of the most debated issues is the time of adaptation to reconstructive manipulation. Often it becomes unclear how and in what order medical diagnostic equipment should be used in the preparatory stages of the stationary prosthetics. Our studies make it possible to predict not only the treatment time, and the amount of occlusal adjustment in conjunction with the reconstruction of the lower jaw. Keywords: tooth-jaw apparatus, temporomandibular joint, violation functional occlusion, dental surgery, medical diagnostic devices, muscle disorders, adaptation, occlusal splint, occlusal adjustment, chewing muscles, provisional design

    The origin of paramagnetic magnetization in field-cooled YBa2Cu3O7 films

    Full text link
    Temperature dependences of the magnetic moment have been measured in YBa_2Cu_3O_{7-\delta} thin films over a wide magnetic field range (5 <= H <= 10^4 Oe). In these films a paramagnetic signal known as the paramagnetic Meissner effect has been observed. The experimental data in the films, which have strong pinning and high critical current densities (J_c ~ 2 \times 10^6 A/cm^2 at 77 K), are quantitatively shown to be highly consistent with the theoretical model proposed by Koshelev and Larkin [Phys. Rev. B 52, 13559 (1995)]. This finding indicates that the origin of the paramagnetic effect is ultimately associated with nucleation and inhomogeneous spatial redistribution of magnetic vortices in a sample which is cooled down in a magnetic field. It is also shown that the distribution of vortices is extremely sensitive to the interplay of film properties and the real experimental conditions of the measurements.Comment: RevTex, 8 figure

    Đ€ŃƒĐœĐșŃ†Ń–ĐŸĐœĐ°Đ»ŃŒĐœĐžĐč ŃŃ‚Đ°Đœ ĐŒâ€™ŃĐ·Ń–ĐČ Đ·ŃƒĐ±ĐŸŃ‰Đ”Đ»Đ”ĐżĐœĐŸĐłĐŸ апарату ĐŽĐŸ та ĐżŃ–ŃĐ»Ń ліĐșуĐČĐ°ĐœĐœŃ ĐŽŃ–Ń‚Đ”Đč Đ· Đ°ĐœĐŸĐŒĐ°Đ»Ń–ŃĐŒĐž проĐșусу та ĐŒĐŸĐČĐ»Đ”ĐœĐœŃ”ĐČĐžĐŒĐž ĐżĐŸŃ€ŃƒŃˆĐ”ĐœĐœŃĐŒĐž

    Get PDF
    During the examination of orthodontic patients, children with speech disorders were found. The myodynamic balance of antagonistic muscles and synergistic muscles is the relative stability of masticatory and mimic muscles, which for a long time persists without noticeable oscillations, contributes to the relatively stable state of dentoalveolar apparatus. The aim of the study – to determine the functional status of muscles of the dentoalveolar apparatus before and after treatment of children with anomalies of bite and speech disorders. Materials and Methods. To achieve study objectives for treatment we selected 44 patients with severe orthodontic pathology and speech disorders, with normal hearing and intellect. The method of a total (surface) electromyography was used to determine and analyze the indices of bioelectric activity of the muscles. Results and Discussion. There was normalization of parameters of bioelectric activity, decrease of parafunctional manifestations in muscles and decrease of the frequency of outbreaks of spontaneous activity of muscles at rest; normalization of the average amplitude of biopotentials in the state of activity, absence of fragmentation, improvement of synchronization and coordination of contractions of examined muscles in all pathologies of dental occlusion after the treatment. Conclusions. The orthodontic treatment performed provided the restoration of the neuromuscular balance of the dentoalveolar apparatus of patients with various dental occlusion pathologies, which has a beneficial effect on the correction of speech disorders.Про ĐŸĐ±ŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐž ĐŸŃ€Ń‚ĐŸĐŽĐŸĐœŃ‚ĐžŃ‡Đ”ŃĐșох ĐżĐ°Ń†ĐžĐ”ĐœŃ‚ĐŸĐČ Đ±Ń‹Đ»Đž ЎДтО с рДчДĐČŃ‹ĐŒĐž ĐœĐ°Ń€ŃƒŃˆĐ”ĐœĐžŃĐŒĐž. ĐœĐžĐŸĐŽĐžĐœĐ°ĐŒĐžŃ‡Đ”ŃĐșĐŸĐ” раĐČĐœĐŸĐČДсОД ĐŒŃ‹ŃˆŃ†-Đ°ĐœŃ‚Đ°ĐłĐŸĐœĐžŃŃ‚ĐŸĐČ Đž ŃĐžĐœĐ”Ń€ĐłĐžŃŃ‚ĐŸĐČ â€“ ŃŃ‚ĐŸ ĐŸŃ‚ĐœĐŸŃĐžŃ‚Đ”Đ»ŃŒĐœĐ°Ń ŃƒŃŃ‚ĐŸĐčчоĐČĐŸŃŃ‚ŃŒ жДĐČĐ°Ń‚Đ”Đ»ŃŒĐœŃ‹Ń… Đž ĐŒĐžĐŒĐžŃ‡Đ”ŃĐșох ĐŒŃ‹ŃˆŃ†, ĐșĐŸŃ‚ĐŸŃ€Đ°Ń ĐČ Ń‚Đ”Ń‡Đ”ĐœĐžĐž ĐŽĐ»ĐžŃ‚Đ”Đ»ŃŒĐœĐŸĐłĐŸ ĐČŃ€Đ”ĐŒĐ”ĐœĐž ŃĐŸŃ…Ń€Đ°ĐœŃĐ”Ń‚ŃŃ бДз Đ·Đ°ĐŒĐ”Ń‚ĐœŃ‹Ń… ĐžĐ·ĐŒĐ”ĐœĐ”ĐœĐžĐč, ŃĐżĐŸŃĐŸĐ±ŃŃ‚ĐČŃƒĐ”Ń‚ ĐŸŃ‚ĐœĐŸŃĐžŃ‚Đ”Đ»ŃŒĐœĐŸĐč ŃŃ‚Đ°Đ±ĐžĐ»ŃŒĐœĐŸŃŃ‚Đž Đ·ŃƒĐ±ĐŸŃ‡Đ”Đ»ŃŽŃŃ‚ĐœĐŸĐłĐŸ аппарата. ĐŠĐ”Đ»ŃŒ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃ – ĐŸĐżŃ€Đ”ĐŽĐ”Đ»ĐžŃ‚ŃŒ Ń„ŃƒĐœĐșŃ†ĐžĐŸĐœĐ°Đ»ŃŒĐœĐŸĐ” ŃĐŸŃŃ‚ĐŸŃĐœĐžĐ” ĐŒŃ‹ŃˆŃ† Đ·ŃƒĐ±ĐŸŃ‡Đ”Đ»ŃŽŃŃ‚ĐœĐŸĐłĐŸ аппарата ĐŽĐŸ Đž ĐżĐŸŃĐ»Đ” Đ»Đ”Ń‡Đ”ĐœĐžŃ ЎДтДĐč с Đ°ĐœĐŸĐŒĐ°Đ»ĐžŃĐŒĐž проĐșуса Đž рДчДĐČŃ‹ĐŒĐž ĐœĐ°Ń€ŃƒŃˆĐ”ĐœĐžŃĐŒĐž. ĐœĐ°Ń‚Đ”Ń€ĐžĐ°Đ»Ń‹ Đž ĐŒĐ”Ń‚ĐŸĐŽŃ‹. Đ”Đ»Ń ĐŽĐŸŃŃ‚ĐžĐ¶Đ”ĐœĐžŃ ĐżĐŸŃŃ‚Đ°ĐČĐ»Đ”ĐœĐœĐŸĐč цДлО Đ±Ń‹Đ»ĐŸ ĐżŃ€ĐžĐœŃŃ‚ĐŸ ĐœĐ° Đ»Đ”Ń‡Đ”ĐœĐžĐ” 44 ĐżĐ°Ń†ĐžĐ”ĐœŃ‚Đ° с ĐČŃ‹Ń€Đ°Đ¶Đ”ĐœĐœĐŸĐč ĐŸŃ€Ń‚ĐŸĐŽĐŸĐœŃ‚ĐžŃ‡Đ”ŃĐșĐŸĐč ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłĐžĐ”Đč Đž рДчДĐČŃ‹ĐŒĐž ĐœĐ°Ń€ŃƒŃˆĐ”ĐœĐžŃĐŒĐž с ĐœĐŸŃ€ĐŒĐ°Đ»ŃŒĐœŃ‹ĐŒ ŃĐ»ŃƒŃ…ĐŸĐŒ Đž ĐžĐœŃ‚Đ”Đ»Đ»Đ”ĐșŃ‚ĐŸĐŒ. Đ”Đ»Ń ĐŸĐżŃ€Đ”ĐŽĐ”Đ»Đ”ĐœĐžŃ Đž Đ°ĐœĐ°Đ»ĐžĐ·Đ° ĐżĐŸĐșазатДлДĐč Đ±ĐžĐŸŃĐ»Đ”ĐșтрОчДсĐșĐŸĐč Đ°ĐșтоĐČĐœĐŸŃŃ‚Đž ĐŒŃ‹ŃˆŃ† ĐžŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°Đœ ĐŒĐ”Ń‚ĐŸĐŽ ŃŃƒĐŒĐŒĐ°Ń€ĐœĐŸĐč (ĐżĐŸĐČĐ”Ń€Ń…ĐœĐŸŃŃ‚ĐœĐŸĐč) ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐŒĐžĐŸĐłŃ€Đ°Ń„ĐžĐž. Đ Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč Đž ох ĐŸĐ±ŃŃƒĐ¶ĐŽĐ”ĐœĐžĐ”. ĐŸĐŸŃĐ»Đ” ĐżŃ€ĐŸĐČĐ”ĐŽŃ‘ĐœĐœĐŸĐłĐŸ Đ»Đ”Ń‡Đ”ĐœĐžŃ ĐœĐ°Đ±Đ»ŃŽĐŽĐ°Đ»Đž ĐœĐŸŃ€ĐŒĐ°Đ»ĐžĐ·Đ°Ń†ĐžŃŽ ĐżĐŸĐșазатДлДĐč Đ±ĐžĐŸŃĐ»Đ”ĐșтрОчДсĐșĐŸĐč Đ°ĐșтоĐČĐœĐŸŃŃ‚Đž, ŃƒĐŒĐ”ĐœŃŒŃˆĐ”ĐœĐžĐ” ĐżĐ°Ń€Đ°Ń„ŃƒĐœĐșŃ†ĐžĐŸĐœĐ°Đ»ŃŒĐœĐžŃ… ĐżŃ€ĐŸŃĐČĐ»Đ”ĐœĐžĐč ĐČ ĐŒŃ‹ŃˆŃ†Đ°Ń… Đž Ń‡Đ°ŃŃ‚ĐŸŃ‚Ń‹ ĐČŃĐżŃ‹ŃˆĐ”Đș ŃĐżĐŸĐœŃ‚Đ°ĐœĐœĐŸĐč Đ°ĐșтоĐČĐœĐŸŃŃ‚Đž ĐŒŃ‹ŃˆŃ† ĐČ ŃĐŸŃŃ‚ĐŸŃĐœĐžĐž ĐżĐŸĐșĐŸŃ, ĐœĐŸŃ€ĐŒĐ°Đ»ĐžĐ·Đ°Ń†ĐžŃ ŃŃ€Đ”ĐŽĐœĐ”Đč Đ°ĐŒĐżĐ»ĐžŃ‚ŃƒĐŽŃ‹ Đ±ĐžĐŸĐżĐŸŃ‚Đ”ĐœŃ†ĐžĐ°Đ»ĐŸĐČ ĐČ ŃĐŸŃŃ‚ĐŸŃĐœĐžĐž Đ°ĐșтоĐČĐœĐŸŃŃ‚Đž, ĐŸŃ‚ŃŃƒŃ‚ŃŃ‚ĐČОД Ń„Ń€Đ°ĐłĐŒĐ”ĐœŃ‚Đ°Ń†ĐžĐč, ŃƒĐ»ŃƒŃ‡ŃˆĐ”ĐœĐžĐ” ŃĐžĐœŃ…Ń€ĐŸĐœĐœĐŸŃŃ‚Đž Đž ĐșĐŸĐŸŃ€ĐŽĐžĐœĐ°Ń†ĐžĐž ŃĐŸĐșŃ€Đ°Ń‰Đ”ĐœĐžĐč ĐŸĐ±ŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐœŃ‹Ń… ĐŒŃ‹ŃˆŃ† про ĐČсДх ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłĐžŃŃ… проĐșуса. ВыĐČĐŸĐŽŃ‹. ĐŸŃ€ĐŸĐČĐ”ĐŽŃ‘ĐœĐœĐŸĐ” ĐŸŃ€Ń‚ĐŸĐŽĐŸĐœŃ‚ĐžŃ‡Đ”ŃĐșĐŸĐ” Đ»Đ”Ń‡Đ”ĐœĐžĐ” ĐŸĐ±Đ”ŃĐżĐ”Ń‡ĐžĐ»ĐŸ ĐČĐŸŃŃŃ‚Đ°ĐœĐŸĐČĐ»Đ”ĐœĐžĐ” ĐœĐ”ĐčŃ€ĐŸĐŒŃ‹ŃˆĐ”Ń‡ĐœĐŸĐłĐŸ Đ±Đ°Đ»Đ°ĐœŃĐ° Đ·ŃƒĐ±ĐŸŃ‡Đ”Đ»ŃŽŃŃ‚ĐœĐŸĐłĐŸ аппарата ĐżĐ°Ń†ĐžĐ”ĐœŃ‚ĐŸĐČ Ń Ń€Đ°Đ·Đ»ĐžŃ‡ĐœŃ‹ĐŒĐž ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłĐžŃĐŒĐž проĐșуса, Ń‡Ń‚ĐŸ ĐžĐŒĐ”Đ”Ń‚ Đ±Đ»Đ°ĐłĐŸĐżŃ€ĐžŃŃ‚ĐœĐŸĐ” ĐČĐŸĐ·ĐŽĐ”ĐčстĐČОД ĐœĐ° ĐșĐŸŃ€Ń€Đ”Đșцою рДчДĐČых ĐœĐ°Ń€ŃƒŃˆĐ”ĐœĐžĐč.ПіЮ час ĐŸĐ±ŃŃ‚Đ”Đ¶Đ”ĐœĐœŃ ĐŸŃ€Ń‚ĐŸĐŽĐŸĐœŃ‚ĐžŃ‡ĐœĐžŃ… ĐżĐ°Ń†Ń–Ń”ĐœŃ‚Ń–ĐČ Đ±ŃƒĐ»Đž Юіто Đ· ĐŒĐŸĐČĐ»Đ”ĐœĐœŃ”ĐČĐžĐŒĐž ĐżĐŸŃ€ŃƒŃˆĐ”ĐœĐœŃĐŒĐž. ĐœŃ–ĐŸĐŽĐžĐœĐ°ĐŒŃ–Ń‡ĐœĐ° ріĐČĐœĐŸĐČага ĐŒâ€™ŃĐ·Ń–ĐČ-Đ°ĐœŃ‚Đ°ĐłĐŸĐœŃ–ŃŃ‚Ń–ĐČ Ń‚Đ° ŃĐžĐœĐ”Ń€ĐłŃ–ŃŃ‚Ń–ĐČ â€“ цД ĐČŃ–ĐŽĐœĐŸŃĐœĐ° стіĐčĐșість жуĐČĐ°Đ»ŃŒĐœĐžŃ… та ĐŒŃ–ĐŒŃ–Ń‡ĐœĐžŃ… ĐŒâ€™ŃĐ·Ń–ĐČ, Ń‰ĐŸ ĐżŃ€ĐŸŃ‚ŃĐłĐŸĐŒ троĐČĐ°Đ»ĐŸĐłĐŸ часу Đ·Đ±Đ”Ń€Ń–ĐłĐ°Ń”Ń‚ŃŒŃŃ бДз ĐżĐŸĐŒŃ–Ń‚ĐœĐžŃ… ĐșĐŸĐ»ĐžĐČĐ°ĐœŃŒ, спрояє ĐČŃ–ĐŽĐœĐŸŃĐœĐŸ ŃŃ‚Đ°Đ±Ń–Đ»ŃŒĐœĐŸĐłĐŸ ŃŃ‚Đ°ĐœŃƒ Đ·ŃƒĐ±ĐŸŃ‰Đ”Đ»Đ”ĐżĐœĐŸĐłĐŸ апарату. ĐœĐ”Ń‚Đ° ĐŽĐŸŃĐ»Ń–ĐŽĐ¶Đ”ĐœĐœŃ – ĐČĐžĐ·ĐœĐ°Ń‡ĐžŃ‚Đž Ń„ŃƒĐœĐșŃ†Ń–ĐŸĐœĐ°Đ»ŃŒĐœĐžĐč ŃŃ‚Đ°Đœ ĐŒâ€™ŃĐ·Ń–ĐČ Đ·ŃƒĐ±ĐŸŃ‰Đ”Đ»Đ”ĐżĐœĐŸĐłĐŸ апарату ĐŽĐŸ та ĐżŃ–ŃĐ»Ń ліĐșуĐČĐ°ĐœĐœŃ ĐŽŃ–Ń‚Đ”Đč Đ· Đ°ĐœĐŸĐŒĐ°Đ»Ń–ŃĐŒĐž проĐșусу та ĐŒĐŸĐČĐ»Đ”ĐœĐœŃ”ĐČĐžĐŒĐž ĐżĐŸŃ€ŃƒŃˆĐ”ĐœĐœŃĐŒĐž. ĐœĐ°Ń‚Đ”Ń€Ń–Đ°Đ»Đž і ĐŒĐ”Ń‚ĐŸĐŽĐž. Đ”Đ»Ń ĐŽĐŸŃŃĐłĐœĐ”ĐœĐœŃ ĐżĐŸŃŃ‚Đ°ĐČĐ»Đ”ĐœĐŸŃ— ĐŒĐ”Ń‚Đž Đ±ŃƒĐ»ĐŸ проĐčĐœŃŃ‚ĐŸ ĐœĐ° ліĐșуĐČĐ°ĐœĐœŃ 44 ĐżĐ°Ń†Ń–Ń”ĐœŃ‚Đž Đ· ĐČĐžŃ€Đ°Đ¶Đ”ĐœĐŸŃŽ ĐŸŃ€Ń‚ĐŸĐŽĐŸĐœŃ‚ĐžŃ‡ĐœĐŸŃŽ ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłŃ–Ń”ŃŽ та ĐŒĐŸĐČĐ»Đ”ĐœĐœŃ”ĐČĐžĐŒĐž ĐżĐŸŃ€ŃƒŃˆĐ”ĐœĐœŃĐŒĐž Ń–Đ· ĐœĐŸŃ€ĐŒĐ°Đ»ŃŒĐœĐžĐŒ ŃĐ»ŃƒŃ…ĐŸĐŒ та Ń–ĐœŃ‚Đ”Đ»Đ”ĐșŃ‚ĐŸĐŒ. Đ”Đ»Ń ĐČĐžĐ·ĐœĐ°Ń‡Đ”ĐœĐœŃ та Đ°ĐœĐ°Đ»Ń–Đ·Ńƒ ĐżĐŸĐșĐ°Đ·ĐœĐžĐșіĐČ Đ±Ń–ĐŸĐ”Đ»Đ”ĐșŃ‚Ń€ĐžŃ‡ĐœĐŸŃ— Đ°ĐșтоĐČĐœĐŸŃŃ‚Ń– ĐŒâ€™ŃĐ·Ń–ĐČ ĐČĐžĐșĐŸŃ€ĐžŃŃ‚Đ°ĐœĐŸ ĐŒĐ”Ń‚ĐŸĐŽ ŃŃƒĐŒĐ°Ń€ĐœĐŸŃ— (ĐżĐŸĐČĐ”Ń€Ń…ĐœĐ”ĐČĐŸŃ—) ДлДĐșŃ‚Ń€ĐŸĐŒŃ–ĐŸĐłŃ€Đ°Ń„Ń–Ń—. Đ Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Đž ĐŽĐŸŃĐ»Ń–ĐŽĐ¶Đ”ĐœŃŒ та їх ĐŸĐ±ĐłĐŸĐČĐŸŃ€Đ”ĐœĐœŃ. ĐŸŃ–ŃĐ»Ń ĐżŃ€ĐŸĐČĐ”ĐŽĐ”ĐœĐŸĐłĐŸ ліĐșуĐČĐ°ĐœĐœŃ ŃĐżĐŸŃŃ‚Đ”Ń€Ń–ĐłĐ°Đ»Đž ĐœĐŸŃ€ĐŒĐ°Đ»Ń–Đ·Đ°Ń†Ń–ŃŽ ĐżĐŸĐșĐ°Đ·ĐœĐžĐșіĐČ Đ±Ń–ĐŸĐ”Đ»Đ”ĐșŃ‚Ń€ĐžŃ‡ĐœĐŸŃ— Đ°ĐșтоĐČĐœĐŸŃŃ‚Ń–, Đ·ĐŒĐ”ĐœŃˆĐ”ĐœĐœŃ ĐżĐ°Ń€Đ°Ń„ŃƒĐœĐșŃ†Ń–ĐŸĐœĐ°Đ»ŃŒĐœĐžŃ… ĐżŃ€ĐŸŃĐČіĐČ Ńƒ ĐŒâ€™ŃĐ·Đ°Ń… та Ń‡Đ°ŃŃ‚ĐŸŃ‚Đž спалахіĐČ ŃĐżĐŸĐœŃ‚Đ°ĐœĐœĐŸŃ— Đ°ĐșтоĐČĐœĐŸŃŃ‚Ń– ĐŒâ€™ŃĐ·Ń–ĐČ Ńƒ ŃŃ‚Đ°ĐœŃ– ŃĐżĐŸĐșĐŸŃŽ, ĐœĐŸŃ€ĐŒĐ°Đ»Ń–Đ·Đ°Ń†Ń–Ń ŃĐ”Ń€Đ”ĐŽĐœŃŒĐŸŃ— Đ°ĐŒĐżĐ»Ń–Ń‚ŃƒĐŽĐž Đ±Ń–ĐŸĐżĐŸŃ‚Đ”ĐœŃ†Ń–Đ°Đ»Ń–ĐČ Ńƒ ŃŃ‚Đ°ĐœŃ– Đ°ĐșтоĐČĐœĐŸŃŃ‚Ń–, ĐČŃ–ĐŽŃŃƒŃ‚ĐœŃ–ŃŃ‚ŃŒ Ń„Ń€Đ°ĐłĐŒĐ”ĐœŃ‚Đ°Ń†Ń–Đč, ĐżĐŸĐșŃ€Đ°Ń‰Đ”ĐœĐœŃ ŃĐžĐœŃ…Ń€ĐŸĐœĐœĐŸŃŃ‚Ń– та ĐșĐŸĐŸŃ€ĐŽĐžĐœĐ°Ń†Ń–Ń— сĐșĐŸŃ€ĐŸŃ‡Đ”ĐœŃŒ ĐŸĐ±ŃŃ‚Đ”Đ¶Đ”ĐœĐžŃ… ĐŒâ€™ŃĐ·Ń–ĐČ ĐżŃ€Đž усіх ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłŃ–ŃŃ… проĐșусу. Đ’ĐžŃĐœĐŸĐČĐșĐž. ĐŸŃ€ĐŸĐČĐ”ĐŽĐ”ĐœĐ” ĐŸŃ€Ń‚ĐŸĐŽĐŸĐœŃ‚ĐžŃ‡ĐœĐ” ліĐșуĐČĐ°ĐœĐœŃ Đ·Đ°Đ±Đ”Đ·ĐżĐ”Ń‡ĐžĐ»ĐŸ ĐČŃ–ĐŽĐœĐŸĐČĐ»Đ”ĐœĐœŃ ĐœĐ”ĐčŃ€ĐŸĐŒâ€™ŃĐ·ĐŸĐČĐŸĐłĐŸ Đ±Đ°Đ»Đ°ĐœŃŃƒ Đ·ŃƒĐ±ĐŸŃ‰Đ”Đ»Đ”ĐżĐœĐŸĐłĐŸ апарату ĐżĐ°Ń†Ń–Ń”ĐœŃ‚Ń–ĐČ Ń–Đ· Ń€Ń–Đ·ĐœĐžĐŒĐž ĐżĐ°Ń‚ĐŸĐ»ĐŸĐłŃ–ŃĐŒĐž проĐșусу, Ń‰ĐŸ ĐŒĐ°Ń” ŃĐżŃ€ĐžŃŃ‚Đ»ĐžĐČĐžĐč ĐČплОĐČ ĐœĐ° ĐșĐŸŃ€Đ”Đșцію ĐŒĐŸĐČĐ»Đ”ĐœĐœŃ”ĐČох ĐżĐŸŃ€ŃƒŃˆĐ”ĐœŃŒ

    Two chemically distinct root lignin barriers control solute and water balance.

    Get PDF
    Lignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth

    Lateral Distribution of Muons in IceCube Cosmic Ray Events

    Get PDF
    In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations

    Search for non-relativistic Magnetic Monopoles with IceCube

    Get PDF
    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1 km31\,\mathrm{km}^3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 10−27 cm210^{-27}\,\mathrm{cm^2} to 10−21 cm210^{-21}\,\mathrm{cm^2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 10−22 (10−24) cm210^{-22}\,(10^{-24})\,\mathrm{cm^2} the flux of non-relativistic GUT monopoles is constrained up to a level of Ί90≀10−18 (10−17) cm−2s−1sr−1\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}} at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure

    Search for Relativistic Magnetic Monopoles with IceCube

    Get PDF
    We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km3^{3}. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km3^{3} of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of \Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits for ÎČ≄0.8\beta\geq0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost Îł\gamma below 10710^{7}. This result is then interpreted for a wide range of mass and kinetic energy values.Comment: 11 pages, 11 figures. v2 is minor text edits, no changes to resul

    Book Reviews

    Get PDF
    With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses 6 years of IceCube data focusing on muon neutrino ‘track’ events from the Northern Hemisphere, while the second analysis uses 2 years of ‘cascade’ events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: we obtain the strongest constraint to date, excluding lifetimes shorter than 102810^{28} s at 90% CL for dark matter masses above 10 TeV
    • 

    corecore