40 research outputs found

    Bacteriological and physico-chemical assessment of wastewater in different region of Tunisia: impact on human health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many parts of the world, health problems and diseases have often been caused by discharging untreated or inadequately treated wastewater. In this study, we aimed to control physico-chemical parameters in wastewater samples. Also, microbiological analyses were done to reveal <it>Salmonella </it>strains and each <it>Escherichia coli </it>(<it>E.coli</it>) pathotype.</p> <p>Findings</p> <p>Sixty wastewater samples were collected from fifteen different regions of Tunisia. All physico-chemical parameters (pH, residual free chlorine, total suspended solids, biological oxygen demand, and chemical oxygen demand) were evaluated.</p> <p>For microbiological analyses, samples were filtered to concentrate bacteria. DNA was extracted by boiling and subjected to polymerase chain reaction (PCR) using different pairs of primers.</p> <p>The mean pH values recorded for the sampling point were above the WHO pH tolerance limit. The total suspended solids (TSS) concentrations varied between 240 mg/L and 733 mg/L in entrance points and between 13 mg/L and 76 mg/L in exit points. In entrance points, the studied wastewater has an average COD concentration that varied between 795 mg/mL to 1420 mg/mL. Whereas, BOD concentration of the wastewater ranged between 270 mg/L to 610 mg/L. In exit points, COD concentration varied between 59 mg/L and 141 mg/L, whereas BOD concentration ranged from 15 mg/L to 87 mg/L.</p> <p>The bacteriological control of wastewaters showed that, in entrance points, <it>Escherichia coli </it>(<it>E.coli</it>) was detected at the rate of 76.6%. Three <it>E.coli </it>pathotypes were found: ETEC (53.3%), EAEC (16.6%) and EIEC (6.6%).</p> <p>Concerning the ETEC isolated strains, 8 of 16 (50%) have only the heat-labile toxin gene, 5 of 16 (31.2%) present only the heat-stable toxin gene and 3 of 16 (18.7%) of strains possess both heat-labile toxin gene and heat-stable toxin gene. In exist point, the same pathotypes were found but all detected ETEC strains present only the "est" gene.</p> <p>Concerning <it>Salmonella </it>isolated strains; percentages of 66.6% and 20% were found in entrance and exit points respectively.</p> <p>Conclusions</p> <p>Wastewaters contain a large amount of pathogenic bacteria that present a real impact on human health. Assessment wastewater treatment stations have to consider in account enterobacterial pathogens as potential pathogens that should be correctly controlled.</p

    Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>is an intracellular pathogen of environmental protozoa. When humans inhale contaminated aerosols this bacterium may cause a severe pneumonia called Legionnaires' disease. Despite the abundance of dozens of <it>Legionella </it>species in aquatic reservoirs, the vast majority of human disease is caused by a single serogroup (Sg) of a single species, namely <it>L. pneumophila </it>Sg1. To get further insights into genome dynamics and evolution of Sg1 strains, we sequenced strains Lorraine and HL 0604 1035 (Sg1) and compared them to the available sequences of Sg1 strains Paris, Lens, Corby and Philadelphia, resulting in a comprehensive multigenome analysis.</p> <p>Results</p> <p>We show that <it>L. pneumophila </it>Sg1 has a highly conserved and syntenic core genome that comprises the many eukaryotic like proteins and a conserved repertoire of over 200 Dot/Icm type IV secreted substrates. However, recombination events and horizontal gene transfer are frequent. In particular the analyses of the distribution of nucleotide polymorphisms suggests that large chromosomal fragments of over 200 kbs are exchanged between <it>L. pneumophila </it>strains and contribute to the genome dynamics in the natural population. The many secretion systems present might be implicated in exchange of these fragments by conjugal transfer. Plasmids also play a role in genome diversification and are exchanged among strains and circulate between different <it>Legionella </it>species.</p> <p>Conclusion</p> <p>Horizontal gene transfer among bacteria and from eukaryotes to <it>L. pneumophila </it>as well as recombination between strains allows different clones to evolve into predominant disease clones and others to replace them subsequently within relatively short periods of time.</p

    Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes

    Full text link
    The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteobacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal ‘dark matter’, is able to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. The maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell
    corecore