56 research outputs found

    Inflammatory Cytokines Associated With Failure of Lower-Extremity Endovascular Revascularization (LER): A Prospective Study of a Population With Diabetes

    Get PDF
    OBJECTIVE Peripheral artery disease (PAD) is one of the most relevant complications of diabetes. Although several pharmacological and revascularization approaches are available for treating patients with diabetes and PAD, an endovascular approach is often associated with postprocedural complications that can increase the risk for acute limb ischemia or amputation. However, no definitive molecular associations have been described that could explain the difference in outcomes after endovascular treatment in patients with diabetes, PAD, and chronic limb-threatening ischemia (CLTI). RESEARCH DESIGN AND METHODS We evaluated the relationship between the levels of the main cytokines associated with diabetic atherosclerosis and the outcomes after endovascular procedures in patients with diabetes, PAD, and CLTI. RESULTS A total of 299 patients with below-the-knee occlusive disease who were undergoing an angioplasty procedure were enrolled. The levels of key cytokines—osteoprotegerin (OPG), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP)—were measured, and major adverse limb events (MALE) and major adverse cardiovascular events (MACE) were assessed 1, 3, 6, and 12 months after the procedure. There was a linear trend from the lowest to the highest quartile for each cytokine at baseline and incident MALE. A linear association was also observed between increasing levels of each cytokine and incident MACE. Receiver operating characteristics models were constructed using clinical and laboratory risk factors, and the inclusion of cytokines significantly improved the prediction of incident events. CONCLUSIONS We demonstrated that elevated OPG, TNF-α, IL-6, and CRP levels at baseline correlate with worse vascular outcomes in patients with diabetes, PAD, and CLTI undergoing an endovascular procedure

    Transcriptional Hallmarks of Noonan Syndrome and Noonan-Like Syndrome with Loose Anagen Hair

    Get PDF
    Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is genetically heterogeneous, being caused by germline mutations affecting various genes implicated in the RAS signaling network. This network transduces extracellular signals into intracellular biochemical and transcriptional responses controlling cell proliferation, differentiation, metabolism, and senescence. To explore the transcriptional consequences of NS-causing mutations, we performed global mRNA expression profiling on peripheral blood mononuclear cells obtained from 23 NS patients carrying heterozygous mutations in PTPN11 or SOS1. Gene expression profiling was also resolved in five subjects with Noonan-like syndrome with loose anagen hair (NS/LAH), a condition clinically related to NS and caused by an invariant mutation in SHOC2. Robust transcriptional signatures were found to specifically discriminate each of the three mutation groups from 21 age- and sex-matched controls. Despite the only partial overlap in terms of gene composition, the three signatures showed a notable concordance in terms of biological processes and regulatory circuits affected. These data establish expression profiling of peripheral blood mononuclear cells as a powerful tool to appreciate differential perturbations driven by germline mutations of transducers involved in RAS signaling and to dissect molecular mechanisms underlying NS and other RASopathies. Hum Mutat 33:703–709, 2012. © 2012 Wiley Periodicals, Inc

    Dietary Risk Factors and Eating Behaviors in Peripheral Arterial Disease (PAD)

    Get PDF
    Dietary risk factors play a fundamental role in the prevention and progression of atherosclerosis and PAD (Peripheral Arterial Disease). The impact of nutrition, however, defined as the process of taking in food and using it for growth, metabolism and repair, remains undefined with regard to PAD. This article describes the interplay between nutrition and the development/progression of PAD. We reviewed 688 articles, including key articles, narrative and systematic reviews, meta-analyses and clinical studies. We analyzed the interaction between nutrition and PAD predictors, and subsequently created four descriptive tables to summarize the relationship between PAD, dietary risk factors and outcomes. We comprehensively reviewed the role of well-studied diets (Mediterranean, vegetarian/vegan, low-carbohydrate ketogenic and intermittent fasting diet) and prevalent eating behaviors (emotional and binge eating, night eating and sleeping disorders, anorexia, bulimia, skipping meals, home cooking and fast/ultra-processed food consumption) on the traditional risk factors of PAD. Moreover, we analyzed the interplay between PAD and nutritional status, nutrients, dietary patterns and eating habits. Dietary patterns and eating disorders affect the development and progression of PAD, as well as its disabling complications including major adverse cardiovascular events (MACE) and major adverse limb events (MALE). Nutrition and dietary risk factor modification are important targets to reduce the risk of PAD as well as the subsequent development of MACE and MALE

    TBCE Mutations Cause Early-Onset Progressive Encephalopathy with Distal Spinal Muscular Atrophy

    Get PDF
    Tubulinopathies constitute a family of neurodevelopmental/neurodegenerative disorders caused by mutations in several genes encoding tubulin isoforms. Loss-of-function mutations in TBCE, encoding one of the five tubulin-specific chaperones involved in tubulin folding and polymerization, cause two rare neurodevelopmental syndromes, hypoparathyroidism-retardation-dysmorphism and Kenny-Caffey syndrome. Although a missense mutation in Tbce has been associated with progressive distal motor neuronopathy in the pmn/pmn mice, no similar degenerative phenotype has been recognized in humans. We report on the identification of an early-onset and progressive neurodegenerative encephalopathy with distal spinal muscular atrophy resembling the phenotype of pmn/pmn mice and caused by biallelic TBCE mutations, with the c.464T>A (p.Ile155Asn) change occurring at the heterozygous/homozygous state in six affected subjects from four unrelated families originated from the same geographical area in Southern Italy. Western blot analysis of patient fibroblasts documented a reduced amount of TBCE, suggestive of rapid degradation of the mutant protein, similarly to what was observed in pmn/pmn fibroblasts. The impact of TBCE mutations on microtubule polymerization was determined using biochemical fractionation and analyzing the nucleation and growth of microtubules at the centrosome and extracentrosomal sites after treatment with nocodazole. Primary fibroblasts obtained from affected subjects displayed a reduced level of polymerized α-tubulin, similarly to tail fibroblasts of pmn/pmn mice. Moreover, markedly delayed microtubule re-polymerization and abnormal mitotic spindles with disorganized microtubule arrangement were also documented. Although loss of function of TBCE has been documented to impact multiple developmental processes, the present findings provide evidence that hypomorphic TBCE mutations primarily drive neurodegeneration

    Serum High Mobility Group Box-1 Levels Associated With Cardiovascular Events After Lower Extremity Revascularization: A Prospective Study of a Diabetic Population

    Get PDF
    Background: Peripheral arterial disease (PAD) is one of the most disabling cardiovascular complications of type 2 diabetes mellitus and is indeed associated with a high risk of cardiovascular and limb adverse events. High mobility group box-1 (HMGB-1) is a nuclear protein involved in the inflammatory response that acts as a pro-inflammatory cytokine when released into the extracellular space. HMBG-1 is associated with PAD in diabetic patients. The aim of this study was to evaluate the association between serum HMGB-1 levels and major adverse cardiovascular events (MACE) and major adverse limb events (MALE) after lower-extremity endovascular revascularization (LER) in a group of diabetic patients with chronic limb-threatening ischemia (CLTI). Methods: We conducted a prospective observational study of 201 diabetic patients with PAD and CLTI requiring LER. Baseline serum HMGB-1 levels were determined before endovascular procedure. Data on cardiovascular and limb outcomes were collected in a 12-month follow-up. Results: During the follow-up period, 81 cases of MACE and 93 cases of MALE occurred. Patients who subsequently developed MACE and MALE had higher serum HMGB-1 levels. Specifically, 7.5 ng/mL vs 4.9 ng/mL (p \u3c 0.01) for MACE and 7.2 ng/mL vs 4.8 ng/mL (p \u3c 0.01) for MALE. After adjusting for traditional cardiovascular risk factors, the association between serum HMGB-1 levels and cardiovascular outcomes remained significant in multivariable analysis. In our receiver operating characteristic (ROC) curve analysis, serum HMGB-1 levels were a good predictor of MACE incidence (area under the curve [AUC] = 0.78) and MALE incidence (AUC = 0.75). Conclusions: This study demonstrates that serum HMGB-1 levels are associated with the incidence of MACE and MALE after LER in diabetic populations with PAD and CLTI

    Development of a Biomarker Panel for Assessing Cardiovascular Risk in Diabetic Patients With Chronic Limb-Threatening Ischemia (Clti): A Prospective Study

    Get PDF
    BACKGROUND: Lower-extremity endovascular revascularization (LER) is often required for diabetic patients with chronic limb threatening ischemia (CLTI). During the post-revascularization period patients may unpredictably experience major adverse cardiac events (MACE) and major adverse limb events (MALE). Several families of cytokines are involved in the inflammatory process that underlies the progression of atherosclerosis. According to current evidence, we have identified a panel of possible biomarkers related with the risk of developing MACE and MALE after LER. The aim was to study the relationship between a panel of biomarkers - Interleukin-1 (IL-1) and 6 (IL-6), C-Reactive Protein (CRP), Tumor Necrosis Factor-α (TNF-α), High-Mobility Group Box-1 (HMGB-1), Osteoprotegerin (OPG), Sortilin and Omentin-1- at baseline, with cardiovascular outcomes (MACE and MALE) after LER in diabetic patients with CLTI. METHODS: In this prospective non-randomized study, 264 diabetic patients with CLTI undergoing endovascular revascularization were enrolled. Serum levels of each biomarker were collected before revascularization and outcomes\u27 incidence was evaluated after 1, 3, 6 and 12 months. RESULTS: During the follow-up period, 42 cases of MACE and 81 cases of MALE occurred. There was a linear association for each biomarker at baseline and incident MACE and MALE, except Omentin-1 levels that were inversely related to the presence of MACE or MALE. After adjusting for traditional cardiovascular risk factors, the association between each biomarker baseline level and outcomes remained significant in multivariable analysis. Receiver operating characteristics (ROC) models were constructed using traditional clinical and laboratory risk factors and the inclusion of biomarkers significantly improved the prediction of incident events. CONCLUSIONS: Elevated IL-1, IL-6, CRP, TNF-α, HMGB-1, OPG and Sortilin levels and low Omentin-1 levels at baseline correlate with worse vascular outcomes in diabetic patients with CLTI undergoing LER. Assessment of the inflammatory state with this panel of biomarkers may support physicians to identify a subset of patients more susceptible to the procedure failure and to develop cardiovascular adverse events after LER

    De Novo VPS4A Mutations Cause Multisystem Disease with Abnormal Neurodevelopment.

    Get PDF
    The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.This work was supported by: UK Medical Research Council Project Grants [MR/M00046X/1], [MR/R026440/1] and Project grant from National Institute of Health Research Biomedical Research Centre at Addenbrooke's Hospital (to E.R.), Fondazione Bambino Gesù (Vite Coraggiose) and Italian Ministry of Health (CCR-2017-23669081) (to M.T.), National Institute for Health Research (NIHR) for the Cambridge Biomedical Research Centre and NIHR BioResource (Grant Number RG65966) (to F.L.R.), and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 216370/Z/19/Z) (to J.E.). CIMR was supported by a Wellcome Trust Strategic Award [100140] and Equipment Grant [093026]. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited (a wholly owned company of the Department of Health and Social Care). The 100,000 Genomes Project is funded by the National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK and the Medical Research Council have also funded research infrastructure. The 100,000 Genomes Project uses data provided by patients and collected by the National Health Service as part of their care and support

    Hyperactive HRAS dysregulates energetic metabolism in fibroblasts from patients with Costello syndrome via enhanced production of reactive oxidizing species

    Get PDF
    Germline-activating mutations in HRAS cause Costello syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here, we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via reactive oxygen species-dependent AMP-activated protein kinase α and p38 hyperactivation, occurs in primary fibroblasts of CS patients, resulting in accelerated glycolysis and increased fatty acid synthesis and storage as lipid droplets. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.n

    Germline bi-allelic <i>SH2B3/LNK</i> alteration predisposes to a neonatal juvenile myelomonocytic leukemia-like disorder

    Get PDF
    Juvenile myelomonocytic leukemia (JMML) is a rare, generally aggressive myeloproliferative neoplasm affecting young children. It is characterized by granulomonocytic expansion, with monocytosis infiltrating peripheral tissues. JMML is initiated by mutations upregulating RAS signaling. Approximately 10% of cases remain without an identified driver event. Exome sequencing of 2 unrelated cases of familial JMML of unknown genetics and analysis of the French JMML cohort identified 11 patients with variants in SH2B3, encoding LNK, a negative regulator of the JAK-STAT pathway. All variants were absent from healthy population databases, and mutation spectrum was consistent with a loss of function of the LNK protein. A stoploss variant was shown to affect both protein synthesis and stability. The other variants were either truncating or missense, the latter affecting the SH2 domain that interacts with activated JAK. Of the 11 patients, 8 from 5 families inherited pathogenic bi-allelic SH2B3 germline variants from their unaffected heterozygous parents. These children represent half of the cases with no identified causal mutation in the French cohort. They displayed typical clinical and hematological JMML features with neonatal onset and marked thrombocytopenia. They were characterized by absence of additional genetic alterations and a hypomethylated DNA profile with fetal characteristics. All patients showed partial or complete spontaneous clinical resolution. However, progression to thrombocythemia and immunity-related pathologies may be of concern later in life. Bi-allelic SH2B3 germline mutations thus define a new condition predisposing to a JMML-like disorder, suggesting that the JAK pathway deregulation is capable of initiating JMML, and opening new therapeutic options
    corecore