58 research outputs found

    Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats

    Get PDF
    BACKGROUND:Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable developmental disorder resulting from complex gene-gene and gene-environment interactions. The most widely used animal model, the spontaneously hypertensive rat (SHR), displays the major symptoms of ADHD (deficits in attention, impulsivity and hyperactivity) and has a disturbance in the noradrenergic system when compared to control Wistar-Kyoto rats (WKY). The aim of the present study was to determine whether the ADHD-like characteristics of SHR were purely genetically determined or dependent on the gene-environment interaction provided by the SHR dam. METHODS: SHR/NCrl (Charles River, USA), WKY/NCrl (Charles River, USA) and Sprague Dawley rats (SD/Hsd, Harlan, UK) were bred at the University of Cape Town. Rat pups were cross-fostered on postnatal day 2 (PND 2). Control rats remained with their birth mothers to serve as a reference for their particular strain phenotype. Behavior in the open-field and the elevated-plus maze was assessed between PND 29 and 33. Two days later, rats were decapitated and glutamate-stimulated release of [3H]norepinephrine was determined in prefrontal cortex and hippocampal slices. RESULTS: There was no significant effect of "strain of dam" but there was a significant effect of "pup strain" on all parameters investigated. SHR pups travelled a greater distance in the open field, spent a longer period of time in the inner zone and entered the inner zone of the open-field more frequently than SD or WKY. SD were more active than WKY in the open-field. WKY took longer to enter the inner zone than SHR or SD. In the elevated-plus maze, SHR spent less time in the closed arms, more time in the open arms and entered the open arms more frequently than SD or WKY. There was no difference between WKY and SD behavior in the elevated-plus maze. SHR released significantly more [3H]norepinephrine in response to glutamate than SD or WKY in both hippocampus and prefrontal cortex while SD prefrontal cortex released more [3H]norepinephrine than WKY. SHR were resilient, cross-fostering did not reduce their ADHD-like behavior or change their neurochemistry. Cross-fostering of SD pups onto SHR or WKY dams increased their exploratory behavior without altering their anxiety-like behavior. CONCLUSION: The ADHD-like behavior of SHR and their neurochemistry is genetically determined and not dependent on nurturing by SHR dams. The similarity between WKY and SD supports the continued use of WKY as a control for SHR and suggests that SD may be a useful additional reference strain for SHR. The fact that SD behaved similarly to WKY in the elevated-plus maze argues against the use of WKY as a model for anxiety-like disorders

    Effects of early life trauma are dependent on genetic predisposition: a rat study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trauma experienced early in life increases the risk of developing a number of psychological and/or behavioural disorders. It is unclear, however, how genetic predisposition to a behavioural disorder, such as attention-deficit/hyperactivity disorder (ADHD), modifies the long-term effects of early life trauma. There is substantial evidence from family and twin studies for susceptibility to ADHD being inherited, implying a strong genetic component to the disorder. In the present study we used an inbred animal model of ADHD, the spontaneously hypertensive rat (SHR), to investigate the long-term consequences of early life trauma on emotional behaviour in individuals predisposed to developing ADHD-like behaviour.</p> <p>Methods</p> <p>We applied a rodent model of early life trauma, maternal separation, to SHR and Wistar-Kyoto rats (WKY), the normotensive control strain from which SHR were originally derived. The effects of maternal separation (removal of pups from dam for 3 h/day during the first 2 weeks of life) on anxiety-like behaviour (elevated-plus maze) and depressive-like behaviour (forced swim test) were assessed in prepubescent rats (postnatal day 28 and 31). Basal levels of plasma corticosterone were measured using radioimmunoassay.</p> <p>Results</p> <p>The effect of maternal separation on SHR and WKY differed in a number of behavioural measures. Similar to its reported effect in other rat strains, maternal separation increased the anxiety-like behaviour of WKY (decreased open arm entries) but not SHR. Maternal separation increased the activity of SHR in the novel environment of the elevated plus-maze, while it decreased that of WKY. Overall, SHR showed a more active response in the elevated plus-maze and forced swim test than WKY, regardless of treatment, and were also found to have higher basal plasma corticosterone compared to WKY. Maternal separation increased basal levels of plasma corticosterone in SHR females only, possibly through adaptive mechanisms involved in maintaining their active response in behavioural tests. Basal plasma corticosterone was found to correlate positively with an active response to a novel environment and inescapable stress across all rats.</p> <p>Conclusion</p> <p>SHR are resilient to the anxiogenic effects of maternal separation, and develop a non-anxious, active response to a novel environment following chronic mild stress during the early stages of development. Our findings highlight the importance of genetic predisposition in determining the outcome of early life adversity. SHR may provide a model of early life trauma leading to the development of hyperactivity rather than anxiety and depression. Basal levels of corticosterone correlate with the behavioural response to early life trauma, and may therefore provide a useful marker for susceptibility to a certain behavioural temperament.</p

    The neurobiology of methamphetamine induced psychosis

    Get PDF
    Chronic methamphetamine abuse commonly leads to psychosis, with positive and cognitive symptoms that are similar to those of schizophrenia. Methamphetamine induced psychosis (MAP) can persist and diagnoses of MAP often change to a diagnosis of schizophrenia over time. Studies in schizophrenia have found much evidence of cortical GABAergic dysfunction. Methamphetamine psychosis is a well studied model for schizophrenia, however there is little research on the effects of methamphetamine on cortical GABAergic function in the model, and the neurobiology of MAP is unknown. This paper reviews the effects of methamphetamine on dopaminergic pathways, with focus on its ability to increase glutamate release in the cortex. Excess cortical glutamate would likely damage GABAergic interneurons, and evidence of this disturbance as a result of methamphetamine treatment will be discussed. We propose that cortical GABAergic interneurons are particularly vulnerable to glutamate overflow as a result of subcellular location of NMDA receptors on interneurons in the cortex. Damage to cortical GABAergic function would lead to dysregulation of cortical signals, resulting in psychosis, and further support methamphetamine induced psychosis as a model for schizophrenia

    Perceived mental effort correlates with changes in tonic arousal during attentional tasks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that perceived mental effort reflects changes in arousal during tasks of attention. Such changes in arousal may be tonic or phasic, and may be mediated by the locus-coeruleus norepinephrine (LC-NE) system. We hypothesized that perceived mental effort during attentional tasks would correlate with tonic changes in cortical arousal, as assessed by relative electroencephalogram (EEG) band power and theta/beta ratio, and not with phasic changes in cortical arousal, assessed by P300 amplitude and latency.</p> <p>Methods</p> <p>Forty-six healthy individuals completed tasks that engage the anterior and posterior attention networks (continuous performance task, go/no-go task, and cued target detection task). During completion of the three attentional tasks a continuous record of tonic and phasic arousal was taken. Cortical measures of arousal included frequency band power, theta/beta ratios over frontal and parietal cortices, and P300 amplitude and latency over parietal cortices. Peripheral measures of arousal included skin conductance responses, heart rate and heart rate variance. Participants reported their perceived mental effort during each of the three attentional tasks.</p> <p>Results</p> <p>First, changes in arousal were seen from rest to completion of the three attentional tasks and between the attentional tasks. Changes seen between the attentional tasks being related to the task design and the attentional network activated. Second, perceived mental effort increased when demands of the task increased and correlated with left parietal beta band power during the three tasks of attention. Third, increased mental effort during the go/no-go task and the cued target detection task was inversely related to theta/beta ratios.</p> <p>Conclusion</p> <p>These results indicate that perceived mental effort reflects tonic rather than phasic changes in arousal during tasks of attention. We suggest that perceived mental effort may reflect in part tonic activity of the LC-NE system in healthy individuals.</p

    Mindfulness based cognitive therapy improves frontal control in bipolar disorder: a pilot EEG study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cognitive processing in Bipolar Disorder is characterized by a number of attentional abnormalities. Mindfulness Based Cognitive Therapy combines mindfulness meditation, a form of attentional training, along with aspects of cognitive therapy, and may improve attentional dysfunction in bipolar disorder patients.</p> <p>Methods</p> <p>12 euthymic BD patients and 9 control participants underwent record of electroencephalography (EEG, band frequency analysis) during resting states (eyes open, eyes closed) and during the completion of a continuous performance task (A-X version, EEG event-related potential (ERP) wave component analysis). The individuals with BD completed an 8-week MBCT intervention and record of EEG was repeated.</p> <p>Results</p> <p>(1) Brain activity, individuals with BD showed significantly decreased theta band power, increased beta band power, and decreased theta/beta ratios during the resting state, eyes closed, for frontal and cingulate cortices. Post MBCT intervention improvement over the right frontal cortex was seen in the individuals with BD, as beta band power decreased. (2) Brain activation, individuals with BD showed a significant P300-like wave form over the frontal cortex during the cue. Post MBCT intervention the P300-like waveform was significantly attenuated over the frontal cortex.</p> <p>Conclusions</p> <p>Individuals with BD show decreased attentional readiness and activation of non-relevant information processing during attentional processes. These data are the first that show, MBCT in BD improved attentional readiness, and attenuated activation of non-relevant information processing during attentional processes.</p

    The relationship between white matter microstructure and general cognitive ability in patients with schizophrenia and healthy participants in the ENIGMA Consortium

    Get PDF
    Objective: Schizophrenia has recently been associated with widespread white matter microstructural abnormalities, but the functional effects of these abnormalities remain unclear. Widespread heterogeneity of results from studies published to date preclude any definitive characterization of the relationship between white matter and cognitive performance in schizophrenia. Given the relevance of deficits in cognitive function to predicting social and functional outcomes in schizophrenia, the authors carried out a meta-analysis of available data through the ENIGMA Consortium, using a common analysis pipeline, to elucidate the relationship between white matter microstructure and a measure of general cognitive performance, IQ, in patients with schizophrenia and healthy participants. Methods: The meta-analysis included 760 patients with schizophrenia and 957 healthy participants from 11 participating ENIGMA Consortium sites. For each site, principal component analysis was used to calculate both a global fractional anisotropy component (gFA) and a fractional anisotropy component for six long association tracts (LA-gFA) previously associated with cognition. Results: Meta-analyses of regression results indicated that gFA accounted for a significant amount of variation in cognition in the full sample (effect size [Hedges’ g]=0.27, CI=0.17–0.36), with similar effects sizes observed for both the patient (effect size=0.20, CI=0.05–0.35) and healthy participant groups (effect size=0.32, CI=0.18–0.45). Comparable patterns of association were also observed between LA-gFA and cognition for the full sample (effect size=0.28, CI=0.18–0.37), the patient group (effect size=0.23, CI=0.09–0.38), and the healthy participant group (effect size=0.31, CI=0.18–0.44). Conclusions: This study provides robust evidence that cognitive ability is associated with global structural connectivity, with higher fractional anisotropy associated with higher IQ. This association was independent of diagnosis; while schizophrenia patients tended to have lower fractional anisotropy and lower IQ than healthy participants, the comparable size of effect in each group suggested a more general, rather than disease-specific, pattern of association

    Diagnosis of bipolar disorders and body mass index predict clustering based on similarities in cortical thickness-ENIGMA study in 2436 individuals

    Get PDF
    AIMS: Rates of obesity have reached epidemic proportions, especially among people with psychiatric disorders. While the effects of obesity on the brain are of major interest in medicine, they remain markedly under-researched in psychiatry. METHODS: We obtained body mass index (BMI) and magnetic resonance imaging-derived regional cortical thickness, surface area from 836 bipolar disorders (BD) and 1600 control individuals from 14 sites within the ENIGMA-BD Working Group. We identified regionally specific profiles of cortical thickness using K-means clustering and studied clinical characteristics associated with individual cortical profiles. RESULTS: We detected two clusters based on similarities among participants in cortical thickness. The lower thickness cluster (46.8% of the sample) showed thinner cortex, especially in the frontal and temporal lobes and was associated with diagnosis of BD, higher BMI, and older age. BD individuals in the low thickness cluster were more likely to have the diagnosis of bipolar disorder I and less likely to be treated with lithium. In contrast, clustering based on similarities in the cortical surface area was unrelated to BD or BMI and only tracked age and sex. CONCLUSIONS: We provide evidence that both BD and obesity are associated with similar alterations in cortical thickness, but not surface area. The fact that obesity increased the chance of having low cortical thickness could explain differences in cortical measures among people with BD. The thinner cortex in individuals with higher BMI, which was additive and similar to the BD-associated alterations, may suggest that treating obesity could lower the extent of cortical thinning in BD
    corecore