697 research outputs found

    Impact of the financial crisis

    Get PDF

    T_0*-compactification in the hyperspace

    Get PDF
    A *-compactification of a T0 quasi-uniform space (X,U) is a compact T0 quasi-uniform space (Y,V) that has a T(V∨V−1)-dense subspace quasi-isomorphic to (X,U). In this paper we study when the hyperspace with the Hausdorff–Bourbaki quasi-uniformity is *-compactifiable and describe some of its *-compactifications.Kunzi, HA.; Romaguera Bonilla, S.; Sanchez Granero, MA. (2012). T_0*-compactification in the hyperspace. Topology and its Applications. 159:1815-1819. doi:10.1016/j.topol.2011.06.064S1815181915

    Quantum Error Correction via Convex Optimization

    Get PDF
    We show that the problem of designing a quantum information error correcting procedure can be cast as a bi-convex optimization problem, iterating between encoding and recovery, each being a semidefinite program. For a given encoding operator the problem is convex in the recovery operator. For a given method of recovery, the problem is convex in the encoding scheme. This allows us to derive new codes that are locally optimal. We present examples of such codes that can handle errors which are too strong for codes derived by analogy to classical error correction techniques.Comment: 16 page

    Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers

    Full text link
    We have investigated the response of the acoustoelectric current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or the gate voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1 MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously, though at different current values, as if they were superposed on each other. Their presence could result from two independent quantization mechanisms for the acoustoelectric current. We point out that short potential barriers determining the properties of our nominally long constrictions could lead to an additional quantization mechanism, independent from those described in the standard model of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low Temp. Phys. in honour of Prof. F. Pobel

    Two-subband electron transport in nonideal quantum wells

    Full text link
    Electron transport in nonideal quantum wells (QW) with large-scale variations of energy levels is studied when two subbands are occupied. Although the mean fluctuations of these two levels are screened by the in-plane redistribution of electrons, the energies of both levels remain nonuniform over the plane. The effect of random inhomogeneities on the classical transport is studied within the framework of a local response approach for weak disorder. Both short-range and small-angle scattering mechanisms are considered. Magnetotransport characteristics and the modulation of the effective conductivity by transverse voltage are evaluated for different kinds of confinement potentials (hard wall QW, parabolic QW, and stepped QW).Comment: 10 pages, 6 figure

    The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops

    Full text link
    It has been proposed that the million degree temperature of the corona is due to the combined effect of barely-detectable energy releases, so called nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare density and brightness implied by this hypothesis means that conclusive verification is beyond present observational abilities. Nevertheless, we investigate the plausibility of the nanoflare hypothesis by constructing a magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from the nature of an ideal kink instability. The set of energy-releasing instabilities is captured by an instability threshold for linear kink modes. Each point on the threshold is associated with a unique energy release and so we can predict a distribution of nanoflare energies. When the linear instability threshold is crossed, the instability enters a nonlinear phase as it is driven by current sheet reconnection. As the ensuing flare erupts and declines, the field transitions to a lower energy state, which is modelled by relaxation theory, i.e., helicity is conserved and the ratio of current to field becomes invariant within the loop. We apply the model so that all the loops within an ensemble achieve instability followed by energy-releasing relaxation. The result is a nanoflare energy distribution. Furthermore, we produce different distributions by varying the loop aspect ratio, the nature of the path to instability taken by each loop and also the level of radial expansion that may accompany loop relaxation. The heating rate obtained is just sufficient for coronal heating. In addition, we also show that kink instability cannot be associated with a critical magnetic twist value for every point along the instability threshold

    Anisotropic London Penetration Depth and Superfluid Density in Single Crystals of Iron-based Pnictide Superconductors

    Full text link
    In- and out-of-plane magnetic penetration depths were measured in three iron-based pnictide superconducting systems. All studied samples of both 122 systems show a robust power-law behavior, λ(T)Tn\lambda (T) T^n, with the sample-dependent exponent n=2-2.5, which is indicative of unconventional pairing. This scenario could be possible either through scattering in a s±s_{\pm } state or due to nodes in the superconducting gap. In the Nd-1111 system, the interpretation of data may be obscured by the magnetism of rare-earth ions. The overall anisotropy of the pnictide superconductors is small. The 1111 system is about two times more anisotropic than the 122 system. Our data and analysis suggest that the iron-based pnictides are complex superconductors in which a multiband three-dimensional electronic structure and strong magnetic fluctuations play important roles.Comment: submitted to a special issue of Physica C on superconducting pnictide

    How do world and European standard populations impact burden of disease studies? A case study of disability-adjusted life years (DALYs) in Scotland

    Get PDF
    Background Disability-Adjusted Life Years (DALYs) are an established method for quantifying population health needs and guiding prioritisation decisions. Global Burden of Disease (GBD) estimates aim to ensure comparability between countries and over time by using age-standardised rates (ASR) to account for differences in the age structure of different populations. Different standard populations are used for this purpose but it is not widely appreciated that the choice of standard may affect not only the resulting rates but also the rankings of causes of DALYs. We aimed to evaluate the impact of the choice of standard, using the example of Scotland. Methods DALY estimates were derived from the 2016 Scottish Burden of Disease (SBoD) study for an abridged list of 68 causes of disease/injury, representing a three-year annual average across 2014–16. Crude DALY rates were calculated using Scottish national population estimates. DALY ASRs standardised using the GBD World Standard Population (GBD WSP) were compared to those using the 2013 European Standard Population (ESP2013). Differences in ASR and in rank order within the cause list were summarised for all-cause and for each individual cause. Results The ranking of causes by DALYs were similar using crude rates or ASR (ESP2013). All-cause DALY rates using ASR (GBD WSP) were around 26% lower. Overall 58 out of 68 causes had a lower ASR using GBD WSP compared with ESP2013, with the largest falls occurring for leading causes of mortality observed in older ages. Gains in ASR were much smaller in absolute scale and largely affected causes that operated early in life. These differences were associated with a substantial change to the ranking of causes when GBD WSP was used compared with ESP2013. Conclusion Disease rankings based on DALY ASRs are strongly influenced by the choice of standard population. While GBD WSP offers international comparability, within-country analyses based on DALY ASRs should reflect local age structures. For European countries, including Scotland, ESP2013 may better guide local priority setting by avoiding large disparities occurring between crude and age-standardised results sets, which could potentially confuse non-technical audiences

    On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations

    Full text link
    The two-dimensional unsteady coupled Burgers' equations with moderate to severe gradients, are solved numerically using higher-order accurate finite difference schemes; namely the fourth-order accurate compact ADI scheme, and the fourth-order accurate Du Fort Frankel scheme. The question of numerical stability and convergence are presented. Comparisons are made between the present schemes in terms of accuracy and computational efficiency for solving problems with severe internal and boundary gradients. The present study shows that the fourth-order compact ADI scheme is stable and efficient
    • …
    corecore