11 research outputs found

    Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions

    Get PDF
    Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research

    Metabolic traits ruling the specificity of the immune response in different cancer types.

    No full text
    Cancer immunotherapy aims to augment the response of the patient's own immune system against cancer cells. Despite effective for some patients and some cancer types, the therapeutic efficacy of this treatment is limited by the composition of the tumor microenvironment (TME), which is not well-suited for the fitness of anti-tumoral immune cells. However, the TME differs between cancer types and tissues, thus complicating the possibility of the development of therapies that would be effective in a large range of patients. A possible scenario is that each type of cancer cell, granted by its own mutations and reminiscent of the functions of the tissue of origin, has a specific metabolism that will impinge on the metabolic composition of the TME, which in turn specifically affects T cell fitness. Therefore, targeting cancer or T cell metabolism could increase the efficacy and specificity of existing immunotherapies, improving disease outcome and minimizing adverse reactions.status: Published onlin

    Impact of Immunometabolism on Cancer Metastasis: A Focus on T Cells and Macrophages

    No full text
    Despite improved treatment options, cancer remains the leading cause of morbidity and mortality worldwide, with 90% of this mortality correlated to the development of metastasis. Since metastasis has such an impact on treatment success, disease outcome, and global health, it is important to understand the different steps and factors playing key roles in this process, how these factors relate to immune cell function and how we can target metabolic processes at different steps of metastasis in order to improve cancer treatment and patient prognosis. Recent insights in immunometabolism direct to promising therapeutic targets for cancer treatment, however, the specific contribution of metabolism on antitumor immunity in different metastatic niches warrant further investigation. Here, we provide an overview of what is so far known in the field of immunometabolism at different steps of the metastatic cascade, and what may represent the next steps forward. Focusing on metabolic checkpoints in order to translate these findings from in vitro and mouse studies to the clinic has the potential to revolutionize cancer immunotherapy and greatly improve patient prognosis.status: publishe

    Impact of Immunometabolism on Cancer Metastasis: A Focus on T Cells and Macrophages

    No full text
    Despite improved treatment options, cancer remains the leading cause of morbidity and mortality worldwide, with 90% of this mortality correlated to the development of metastasis. Since metastasis has such an impact on treatment success, disease outcome, and global health, it is important to understand the different steps and factors playing key roles in this process, how these factors relate to immune cell function and how we can target metabolic processes at different steps of metastasis in order to improve cancer treatment and patient prognosis. Recent insights in immunometabolism direct to promising therapeutic targets for cancer treatment, however, the specific contribution of metabolism on antitumor immunity in different metastatic niches warrant further investigation. Here, we provide an overview of what is so far known in the field of immunometabolism at different steps of the metastatic cascade, and what may represent the next steps forward. Focusing on metabolic checkpoints in order to translate these findings from in vitro and mouse studies to the clinic has the potential to revolutionize cancer immunotherapy and greatly improve patient prognosis

    Impact of Immunometabolism on Cancer Metastasis: A Focus on T Cells and Macrophages

    No full text
    Despite improved treatment options, cancer remains the leading cause of morbidity and mortality worldwide, with 90% of this mortality correlated to the development of metastasis. Since metastasis has such an impact on treatment success, disease outcome, and global health, it is important to understand the different steps and factors playing key roles in this process, how these factors relate to immune cell function and how we can target metabolic processes at different steps of metastasis in order to improve cancer treatment and patient prognosis. Recent insights in immunometabolism direct to promising therapeutic targets for cancer treatment, however, the specific contribution of metabolism on antitumor immunity in different metastatic niches warrant further investigation. Here, we provide an overview of what is so far known in the field of immunometabolism at different steps of the metastatic cascade, and what may represent the next steps forward. Focusing on metabolic checkpoints in order to translate these findings from in vitro and mouse studies to the clinic has the potential to revolutionize cancer immunotherapy and greatly improve patient prognosis

    Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions

    Get PDF
    Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research

    Systematic benchmarking of single-cell ATAC-sequencing protocols

    Get PDF
    Single-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) has emerged as a powerful tool for dissecting regulatory landscapes and cellular heterogeneity. However, an exploration of systemic biases among scATAC-seq technologies has remained absent. In this study, we benchmark the performance of eight scATAC-seq methods across 47 experiments using human peripheral blood mononuclear cells (PBMCs) as a reference sample and develop PUMATAC, a universal preprocessing pipeline, to handle the various sequencing data formats. Our analyses reveal significant differences in sequencing library complexity and tagmentation specificity, which impact cell-type annotation, genotype demultiplexing, peak calling, differential region accessibility and transcription factor motif enrichment. Our findings underscore the importance of sample extraction, method selection, data processing and total cost of experiments, offering valuable guidance for future research. Finally, our data and analysis pipeline encompasses 169,000 PBMC scATAC-seq profiles and a best practices code repository for scATAC-seq data analysis, which are freely available to extend this benchmarking effort to future protocols
    corecore