1,881 research outputs found

    TFNP Characterizations of Proof Systems and Monotone Circuits

    Get PDF

    STARRY: Analytic Occultation Light Curves

    Get PDF
    We derive analytic, closed form, numerically stable solutions for the total flux received from a spherical planet, moon or star during an occultation if the specific intensity map of the body is expressed as a sum of spherical harmonics. Our expressions are valid to arbitrary degree and may be computed recursively for speed. The formalism we develop here applies to the computation of stellar transit light curves, planetary secondary eclipse light curves, and planet-planet/planet-moon occultation light curves, as well as thermal (rotational) phase curves. In this paper we also introduce STARRY, an open-source package written in C++ and wrapped in Python that computes these light curves. The algorithm in STARRY is six orders of magnitude faster than direct numerical integration and several orders of magnitude more precise. STARRY also computes analytic derivatives of the light curves with respect to all input parameters for use in gradient-based optimization and inference, such as Hamiltonian Monte Carlo (HMC), allowing users to quickly and efficiently fit observed light curves to infer properties of a celestial body's surface map.Comment: 55 pages, 20 figures. Accepted to the Astronomical Journal. Check out the code at https://github.com/rodluger/starr

    A dual-loop tracking control approach to precise nanopositioning

    Get PDF
    The author(s) received no financial support for the research, authorship, and/or publication of this article.Peer reviewedPostprin

    The Relationship of Stomatal Conductnace to Mechanical Strength in Leaves of Santa Monica Plants

    Get PDF
    The Santa Monica Mountains ecosystem has a high diversity of plants with different lifestyles that produce different physiological characteristics individual to all plants. Studies in Australia, another Mediterranean ecosystem, have shown that mechanical strength of leaves is relatable to soil stress. This experiment seeks to determine whether mechanical strengths of leaves correlate to stomatal conductance of leaves across different species in the Santa Monica Mountains. Four species of plants are tested for their stomatal conductance in the field, and the leaves are tested for tensile strength using Youngā€™s Modulus for comparison across leaves. These data show that there was no comparable linear relationship across species, but also found that there were statistical differences in tensile strength and stomatal conductance for all species

    Compliance With a Risk-Factor-Based Guideline for the Prevention of Neonatal Group B Streptococcal Sepsis

    Get PDF
    Objective: The purpose of this study was to determine the compliance rate with a maternal risk-factor-based guideline for the prevention of neonatal group B streptococcal (GBS) sepsis

    On the Power and Limitations of Branch and Cut

    Get PDF
    The Stabbing Planes proof system [Paul Beame et al., 2018] was introduced to model the reasoning carried out in practical mixed integer programming solvers. As a proof system, it is powerful enough to simulate Cutting Planes and to refute the Tseitin formulas - certain unsatisfiable systems of linear equations od 2 - which are canonical hard examples for many algebraic proof systems. In a recent (and surprising) result, Dadush and Tiwari [Daniel Dadush and Samarth Tiwari, 2020] showed that these short refutations of the Tseitin formulas could be translated into quasi-polynomial size and depth Cutting Planes proofs, refuting a long-standing conjecture. This translation raises several interesting questions. First, whether all Stabbing Planes proofs can be efficiently simulated by Cutting Planes. This would allow for the substantial analysis done on the Cutting Planes system to be lifted to practical mixed integer programming solvers. Second, whether the quasi-polynomial depth of these proofs is inherent to Cutting Planes. In this paper we make progress towards answering both of these questions. First, we show that any Stabbing Planes proof with bounded coefficients (SP*) can be translated into Cutting Planes. As a consequence of the known lower bounds for Cutting Planes, this establishes the first exponential lower bounds on SP*. Using this translation, we extend the result of Dadush and Tiwari to show that Cutting Planes has short refutations of any unsatisfiable system of linear equations over a finite field. Like the Cutting Planes proofs of Dadush and Tiwari, our refutations also incur a quasi-polynomial blow-up in depth, and we conjecture that this is inherent. As a step towards this conjecture, we develop a new geometric technique for proving lower bounds on the depth of Cutting Planes proofs. This allows us to establish the first lower bounds on the depth of Semantic Cutting Planes proofs of the Tseitin formulas

    Stabbing Planes

    Get PDF
    We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current polytope can be subdivided by branching on an inequality and its "integer negation." That is, we can (nondeterministically choose) a hyperplane a x >= b with integer coefficients, which partitions the polytope into three pieces: the points in the polytope satisfying a x >= b, the points satisfying a x <= b-1, and the middle slab b-1 < a x < b. Since the middle slab contains no integer points it can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each path terminates when the current polytope is empty, which is polynomial-time checkable. Among our results, we show somewhat surprisingly that Stabbing Planes can efficiently simulate Cutting Planes, and moreover, is strictly stronger than Cutting Planes under a reasonable conjecture. We prove linear lower bounds on the rank of Stabbing Planes refutations, by adapting a lifting argument in communication complexity

    HCCI Engine Control

    Full text link
    Capstone Design and Manufacturing Experience: Fall 2006The EPA has been researching Homogeneous Charge Compression Ignition (HCCI) engines. In HCCI combustion, the fuel is injected into the intake manifold (like gasoline engines) and ignites under compression in the cylinder (similar to diesel engines), giving a high efficiency and low emission burn. In multiple-cylinder engines, a noticeable difference in combustion strength has been observed between cylinders. The difficulty of an effective control method still remains, despite much research in this area. Our project controls one of the many parameters effecting intake temperature and combustion strength, thereby allowing for maximum efficiency and power without sacrificing much of the engineā€™s energy to the device. This design review also includes information on our brainstorming process, our design concepts, and the method through which we will select our final design.http://deepblue.lib.umich.edu/bitstream/2027.42/49564/2/ME450 Final Team 06.pd

    Integrated prevalence mapping of schistosomiasis, soil-transmitted helminthiasis and malaria in lakeside and island communities in Lake Victoria, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is widely advocated that integrated strategies for the control of neglected tropical diseases (NTDs) are cost-effective in comparison to vertical disease-specific programmes. A prerequisite for implementation of control interventions is the availability of baseline data of prevalence, including the population at risk and disease overlap. Despite extensive literature on the distribution of schistosomiasis on the mainland in Uganda, there has been a knowledge gap for the prevalence of co-infections with malaria, particularly for island communities in Lake Victoria. In this study, nine lakeshore and island districts were surveyed for the prevalence of NTDs and malaria, as well as educational and health infrastructure.</p> <p>Results</p> <p>A total of 203 communities were surveyed, including over 5000 school-age children. Varying levels of existing health infrastructure were observed between districts, with only Jinja District regularly treating people for NTDs. Community medicine distributors (CMD) were identified and trained in drug delivery to strengthen capacity. Prevalence levels of intestinal schistosomiasis and soil-transmitted helminthiasis were assessed via Kato-Katz thick smears of stool and malaria prevalence determined by microscopy of fingerprick blood samples. Prevalence levels were 40.8%, 26.04% and 46.4%, respectively, while the prevalence of co-infection by <it>Schistosoma mansoni </it>and <it>Plasmodium </it>spp. was 23.5%. Socio-economic status was strongly associated as a risk factor for positive infection status with one or more of these diseases.</p> <p>Conclusions</p> <p>These results emphasise the challenges of providing wide-scale coverage of health infrastructure and drug distribution in remote lakeshore communities. The data further indicate that co-infections with malaria and NTDs are common, implying that integrated interventions for NTDs and malaria are likely to maximize cost-effectiveness and sustainability of disease control efforts.</p
    • ā€¦
    corecore