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ABSTRACT
We derive analytic, closed form, numerically stable solutions for the total flux received

from a spherical planet, moon or star during an occultation if the specific intensity
map of the body is expressed as a sum of spherical harmonics. Our expressions are
valid to arbitrary degree and may be computed recursively for speed. The formalism
we develop here applies to the computation of stellar transit light curves, planetary
secondary eclipse light curves, and planet-planet/planet-moon occultation light curves,
as well as thermal (rotational) phase curves. In this paper we also introduce starry, an
open-source package written in C++ and wrapped in Python that computes these light
curves. The algorithm in starry is six orders of magnitude faster than direct numerical
integration and several orders of magnitude more precise. starry also computes analytic
derivatives of the light curves with respect to all input parameters for use in gradient-
based optimization and inference, such as Hamiltonian Monte Carlo (HMC), allowing
users to quickly and efficiently fit observed light curves to infer properties of a celestial
body’s surface map. � � $
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1. INTRODUCTION

Our understanding of the surface of Earth and the other planets in our solar system
starts with the creation of maps. Mapping the colors, compositions, and surface
features gives us an understanding of the geological, hydrological, and meteorological
processes at play that are the basis of planetary science, including comparative
planetology. With the discovery of planets orbiting other stars, cartography becomes
a formidable task: these planets are too distant to resolve their surfaces into maps as
we do for our own planetary suite. One way to overcome this drawback is to utilize
the time-dependence of unresolved, disk-integrated light from planetary bodies: both
rotational variability (Russell 1906; Lacis & Fix 1972; Cowan & Agol 2008; Oakley &
Cash 2009) and occultations (Williams et al. 2006; Rauscher et al. 2007) yield the
opportunity to constrain the presence of static variations in the surface features of
exoplanets.

The first application of time-dependent mapping to exoplanets was carried out
in the infrared with the hot Jupiter HD 189733b using both phase variations and
secondary eclipses of the exoplanet (Knutson et al. 2007; Majeau et al. 2012; de Wit
et al. 2012). These yielded crude constraints on the monopole and dipole components
of the thermal emission from the thick, windy atmosphere of this giant planet. Since
then, phase curve and/or secondary eclipse measurements have been made for hundreds
of other exoplanets (e.g., Shabram et al. 2016; Jansen & Kipping 2017; Adams &
Laughlin 2018) and have allowed for the measurements of their average albedos
and, in some cases, higher order spatial features such as hotspot offsets. Given its
unprecedented photometric precision in the thermal infrared, the upcoming James
Webb Space Telescope (JWST) is expected to dramatically push the boundaries of
what can be inferred from these observations, potentially leading to the construction
of de facto surface maps of planets in short orbital periods (Beichman et al. 2014;
Schlawin et al. 2018). Future mission concepts such as the Large UV-Optical-InfraRed
telescope (LUVOIR) and the Origins Space Telescope (OST) will likewise open doors
for the mapping technique, extending it to the study of exoplanets with solid or even
liquid surfaces (e.g., Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012; Cowan
et al. 2012, 2013; Cowan & Fujii 2017; Fujii et al. 2017; Luger et al. 2017; Berdyugina
& Kuhn 2017). Future direct imaging telescopes should also enable eclipse mapping
from mutual transits of binary planets or planet-moon systems (Cabrera & Schneider
2007), in analogy with mutual events viewed in the Solar System (Brinkmann 1973;
Vermilion et al. 1974; Herzog & Beebe 1975; Brinkmann 1976; Reinsch 1994; Young
et al. 1999, 2001; Livengood et al. 2011).

As we prepare to perform these observations, it is essential that we have robust
models of exoplanet light curves so that we may reliably infer the surface maps that
generated them. Because the features that we seek will likely be close to the limit of
detectability, exoplanet mapping is necessarily a probabilistic problem, requiring a
careful statistical approach capable of characterizing the uncertainty on the inferred
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map. Recently, Farr et al. (2018) introduced exocartographer, a Bayesian model for
inferring surface maps and rotation states of exoplanets directly imaged in reflected
light. In a similar but complementary vein, Louden & Kreidberg (2018) presented
spiderman, a fast code to model phase curves and secondary eclipses of exoplanets,
which the authors show is fast enough to be used in Markov Chain Monte Carlo
(MCMC) runs for general mapping problems. However, both algorithms, along with
all others in the literature to date, rely on numerical integration methods to compute
the flux received from the planet during occultation. In addition to the potential loss
of precision due to the approximations they employ, numerical algorithms are typically
much slower than an analytic approach, should it exist. During the writing of this
paper, Haggard & Cowan (2018) derived analytic solutions to the phase curve problem,
demonstrating that an exoplanet’s phase curve can be computed exactly in both
thermal and reflected light if its map is expressed as a sum of spherical harmonics.

Here we present an algorithm to compute analytic occultation light curves of stars,
planets, or moons of arbitrary complexity if the surface map of the occulted body
is expressed in the spherical harmonic basis. Our algorithm generalizes the Mandel
& Agol (2002), Giménez (2006), and Pál (2012) analytic transit formulae to model
eclipses and occultations of bodies with arbitrary, non-radially symmetric surface maps
or stars with limb darkening of arbitrary order. For radially symmetric, second-degree
maps, our expressions reduce to the Mandel & Agol (2002) quadratic limb darkening
transit model; in the limit of zero occultor size or large impact parameter, they reduce
to the expressions of Haggard & Cowan (2018) for thermal phase curves.

This paper is organized as follows: in §2 we discuss the real spherical harmonics
and introduce our mathematical formalism for dealing with spherical harmonic surface
maps. In §3 we discuss how to compute analytic thermal phase curves and occultation
light curves for these surface maps. In §4 we introduce our light curve code, starry,
and discuss how to use it to compute full light curves for systems of exoplanets and
other celestial bodies. We present important caveats in §5 and conclude in §6. Most of
the math, including the derivations of the analytic expressions for the light curves, is
folded into the Appendix. For convenience, throughout the paper we provide links to
Python code (6 ) to reproduce all of the figures, as well as links to Jupyter notebooks
(L ) containing proofs and derivations of the principal equations. Finally, Table 1
at the end lists all the symbols used in the paper, with references to the equations
defining them.

2. SURFACE MAPS

In this section we discuss the mathematical framework we use to express, manipulate,
and rotate spherical harmonic surface maps. We also introduce two bases, along with
corresponding transformations, that will come in handy when computing light curves
in §3: the polynomial basis and the Green’s basis. While it is convenient to express
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a surface map as a set of spherical harmonic coefficients, we will see that it is much
easier to integrate the map if we first transform to the appropriate basis.

2.1. Spherical harmonics

The orthonormal real spherical harmonics Ylm(θ,φ) of degree l ≥ 0 and order
m ∈ [−l, l] with the Condon-Shortley phase factor (e.g. Varshalovich et al. 1988) are
defined in spherical coordinates as

Ylm(θ,φ) =

P̄lm(cos θ) cos(mφ) m ≥ 0

P̄l|m|(cos θ) sin(|m|φ) m < 0 ,
(1)

where P̄lm are the normalized associated Legendre functions (Equation A2). On the
surface of the unit sphere, we have

x = sin θ cosφ

y = sin θ sinφ

z = cos θ , (2)

where θ is the inclination angle and φ is the azimuthal angle (ISO convention). The
observer is located along the z-axis at z = ∞ such that the projected disk of the
body sits at the origin on the xy-plane with x̂ to the right and ŷ up. Re-writing
Equation (1) in terms of x, y, and z leads to expressions that are simply polynomials
of these variables, a fact we will heavily exploit below when computing their integrals.
We derive the polynomial representation of the spherical harmonics in Appendix A.
The spherical harmonics up to degree l = 5 are shown in Figure 1.

2.2. Surface map vectors

Any physical surface map of a celestial body can be expanded in terms of the real
spherical harmonics defined in the previous section. For convenience, in this paper we
represent a surface map as a vector y of spherical harmonic coefficients such that the
specific intensity at the point (x, y) may be written

I(x, y) = ỹT(x, y)y , (3)
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l = 0

l = 1

l = 2

l = 3

l = 4

m = 5

l = 5

m = 4 m = 3 m = 2 m = 1 m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

Figure 1. The real spherical harmonics up to degree l = 5 computed from Equation (1).
In these plots, the x-axis points to the right, the y-axis points up, and the z-axis points out
of the page. 6 Û

where ỹ is the spherical harmonic basis, arranged in increasing degree and order:

ỹ =
(
Y0,0 Y1,−1 Y1,0 Y1,1 Y2,−2 Y2,−1 Y2,0 Y2,1 Y2,2 · · ·

)T
, (4)

where Yl,m = Yl,m(x, y) are given by Equation (A9). For reference, in this basis the
coefficient of the spherical harmonic Yl,m is located at the index

n = l2 + l +m (5)

of the vector y. Conversely, the coefficient at index n of y corresponds to the spherical
harmonic of degree and order given by

l =
⌊√

n
⌋

m = n−
⌊√

n
⌋2 − ⌊√n⌋ , (6)

where b·c is the floor function.

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/ylms.py
https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/ylms.gif
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2.3. Change of basis

In order to compute the occultation light curve for a body with a given surface
map y, it is convenient to first find its polynomial representation p, which we express
as a vector of coefficients in the polynomial basis p̃:

p̃n =

{
x
µ
2 y

ν
2 ν even

x
µ−1
2 y

ν−1
2 z ν odd

p̃ =
(

1 x z y x2 xz xy yz y2 · · ·
)T

, L (7)

where

µ = l −m
ν = l +m (8)

with l and m given by Equation (6). To find p given y, we introduce the change of
basis matrix A1, which transforms a vector in the spherical harmonic basis ỹ to the
polynomial basis p̃:

p = A1 y (9)

The columns of A1 are simply the polynomial vectors corresponding to each of the
spherical harmonics in Equation (4); see Appendix B for details. As before, the specific
intensity at the point (x, y) may be computed as

I(x, y) = p̃Tp

= p̃TA1 y . (10)

As we will see in the next section, integrating the surface map over the disk of the
body is easier if we apply one final transformation to our input vector, rotating it into

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/bp.ipynb
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what we will refer to as the Green’s basis, g̃:

g̃n =



µ+ 2

2
x

µ
2 y

ν
2 ν even

z l = 1, m = 0

3xl−2yz ν odd, µ = 1, l even

z

(
− xl−3 + xl−1 + 4xl−3y2

)
ν odd, µ = 1, l odd

z

(
µ− 3

2
x

µ−5
2 y

ν−1
2 − µ− 3

2
x

µ−5
2 y

ν+3
2 − µ+ 3

2
x

µ−1
2 y

ν−1
2

)
otherwise

g̃ =

(
1 2x z y 3x2 −3xz 2xy 3yz y2 · · ·

)T

, L (11)

where the values of l, m, µ, and ν are given by Equations (6) and (8). Given a
polynomial vector p, the corresponding vector in the Green’s basis, g, can be found
by performing another change of basis operation:

g = A2 p (12)

where the columns of the matrix A2 are the Green’s vectors corresponding to each of
the polynomial terms in Equation (7); see Appendix B for details.

Note that we may also transform directly from the spherical harmonic basis to the
Green’s basis:

g = A2A1 y

= Ay (13)

where

A ≡ A2A1 (14)

is the full change of basis matrix. For completeness, we again note that the specific
intensity at a point on a map described by the spherical harmonic vector y may be
written

I(x, y) = g̃T(x, y)g

= g̃T(x, y)Ay . (15)

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/bg.ipynb
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2.4. Rotation of surface maps

Defining a map as a vector of spherical harmonic coefficients makes it straightforward
to compute the projection of the map under arbitrary rotations of the body via a
rotation matrix R:

y′ = Ry (16)

where y′ are the spherical harmonic coefficients of the rotated map. In Appendix C we
derive expressions for R in terms of the Euler angles α, β, and γ, as well as in terms
of an angle θ and an arbitrary axis of rotation u. Follow the link next to Figure 1 to
view an animation of the spherical harmonics rotating about the y-axis, computed
from Equation (16).

3. COMPUTING LIGHT CURVES

3.1. Rotational phase curves

Consider a body of unit radius centered at the origin, with an observer located
along the z-axis at z = ∞. The body has a surface map given by the spherical
harmonic vector y viewed at an orientation specified by the rotation matrix R, such
that the specific intensity at a point (x, y) on the surface is

I(x, y) = ỹT(x, y)Ry

= p̃T(x, y)A1Ry (17)

where p̃ is the polynomial basis and A1 is the corresponding change-of-basis matrix
(§2.3). The total flux radiated in the direction of the observer is obtained by integrating
the specific intensity over a region S of the projected disk of the body:

F =

‹
I(x, y) dS

=

‹
p̃T(x, y)A1Ry dS

= rTA1Ry , (18)

where A1, R, and y are constant and r is a column vector whose nth component is
given by

rn ≡
‹

p̃n(x, y) dS . (19)
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When the entire disk of the body is visible (i.e., when no occultation is occurring),
this may be written

rn =

ˆ 1

−1

ˆ √1+x2

−
√

1−x2

p̃n(x, y) dy dx

=



Γ
(
µ
4

+ 1
2

)
Γ
(
ν
4

+ 1
2

)
Γ
(
µ+ν
4

+ 2
) µ

2
even,

ν

2
even

√
π

2

Γ
(
µ
4

+ 1
4

)
Γ
(
ν
4

+ 1
4

)
Γ
(
µ+ν
4

+ 2
) µ− 1

2
even,

ν − 1

2
even

0 otherwise.

L (20)

where Γ(·) is the gamma function. Equation (18) may be used to analytically compute
the rotational (thermal) phase curve of a body with an arbitrary surface map. Since
r and A1 are independent of the map coefficients or its orientation, these may be
pre-computed for computational efficiency.

We note, finally, that a form of this solution was very recently found by Haggard
& Cowan (2018); a special case of their equations for phase curves in reflected light
yields analytic expressions for thermal phase curves of spherical harmonics.

3.2. Occultation light curves

As we showed earlier, the specific intensity at a point (x, y) on the surface of a
body described by the map y and the rotation matrix ~R may also be written as

I(x, y) = ỹT(x, y)Ry

= g̃T(x, y)ARy , (21)

where g̃ is the Green’s basis and A is the full change of basis matrix (§2.3). As before,
the total flux radiated in the direction of the observer is obtained by integrating the
specific intensity over a region S of the projected disk of the body:

F =

‹
I(x, y) dS

=

‹
g̃T(x, y) dSARy . (22)

This time, suppose the body is occulted by another body of radius r centered at the
point (xo, yo), so that the surface S over which the integral is taken is a function of r,
xo, and yo. In general, the integral in Equation (22) is difficult (and often impossible)

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/rnsoln.ipynb


10

to compute directly. One way to simplify the problem is to first perform a rotation
through an angle

ω =
π

2
− arctan2(yo, xo) (23)

about the z-axis (u = [0, 0, 1]) so that the occultor lies along the +y-axis, with its
center located a distance b =

√
x2o + y2o from the origin (see Figure 2). In this rotated

frame, the limits of integration (the two points of intersection between the occultor
and the occulted body, should they exist) are symmetric about the y-axis. If we define
φ ∈ [−π/2, π/2] as the angular position of the right hand side intersection point relative
to the occultor center, measured counter-clockwise from the +x direction, the arc of
the occultor that overlaps the occulted body extends from π − φ to 2π + φ (see the
Figure). Similarly, defining λ ∈ [−π/2, π/2] as the angular position of the same point
relative to the origin, the arc of the portion of the occulted body that is visible during
the occultation extends from π − λ to 2π + λ (see the Figure). For future reference, it
can be shown that

φ =


arcsin

(
1− r2 − b2

2br

)
|1− r| < b < 1 + r

π

2
b ≤ 1− r

L (24)

and

λ =


arcsin

(
1− r2 + b2

2b

)
|1− r| < b < 1 + r

π

2
b ≤ 1− r .

L (25)

The case b ≤ 1− r corresponds to an occultation during which the occultor is fully
within the planet disk, so no points of intersection exist. In this case, we define φ
such that the arc from π − φ to 2π + φ spans the entire circumference of the occultor,
and λ such that the arc from π − λ to 2π + λ spans the entire circumference of the
occulted body. Note that if b ≥ 1 + r, no occultation occurs and the flux may be
computed as in §3.1, while if b ≤ r− 1, the entire disk of the body is occulted and the
total flux is zero.

The second trick we employ to solve Equation (30) is to use Green’s theorem to
express the surface integral of g̃n as the line integral of a vector function Gn along
the boundary of the same surface (Pál 2012). Defining the “solution” column vector

sT ≡
‹

g̃T(x, y) dS , (26)

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/lambda.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/lambda.ipynb
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we may write its nth component as

sn =

‹
g̃n(x, y) dS =

˛
Gn(x, y) · dr , (27)

where Gn(x, y) = Gnx(x, y) x̂ +Gny(x, y) ŷ is chosen such that

D ∧Gn = g̃n(x, y) . (28)

The operation D ∧ Gn denotes the exterior derivative of Gn. In two-dimensional
Cartesian coordinates, it is given by

D ∧Gn ≡
dGny

dx
− dGnx

dy
. (29)

Thus, in order to compute sn in Equation (27), we must (1) apply a rotation to our
map y to align the occultor with the +y-axis; (2) find a vector function Gn whose
exterior derivative is the nth component of the vector basis g̃ (Equation 11); and (3)
integrate it along the boundary of the visible portion of the occulted body’s surface.
In general, for an occultation involving two bodies, this boundary consists of two arcs:
a segment of the circle bounding the occultor (thick red curve in Figure 2), and a
segment of the circle bounding the occulted body (thick black curve in Figure 2). If
we happen to know Gn, the integral in Equation (27) is just

sn = Q(Gn)− P(Gn) , (30)

where, as in Pál (2012), we define the primitive integrals

P(Gn) =

2π+φˆ

π−φ

[
Gny(rcϕ, b+ rsϕ)cϕ −Gnx(rcϕ, b+ rsϕ)sϕ

]
rdϕ (31)

and

Q(Gn) =

2π+λˆ

π−λ

[
Gny(cϕ, sϕ)cϕ −Gnx(cϕ, sϕ)sϕ

]
dϕ , (32)
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where we defined cϕ ≡ cosϕ and sϕ ≡ sinϕ and we used the fact that along the arc of
a circle,

dr = −rsϕ dϕ x̂ + rcϕ dϕ ŷ . (33)

In Equations (31) and (32), P(Gn) is the line integral along the arc of the occultor of
radius r, and Q(Gn) is the line integral along the arc of the occulted body of radius
one.

As cumbersome as the Green’s basis (Equation 11) may appear, the reason we
introduced it is that its anti-exterior derivatives are conveniently simple. It can be
easily shown that one possible solution to Equation (28) is

Gn(x, y) =



x
µ+2
2 y

ν
2 ŷ ν even

1− z3

3(1− z2)
(−y x̂ + x ŷ) l = 1, m = 0

xl−2z3 x̂ ν odd, µ = 1, l even

xl−3yz3 x̂ ν odd, µ = 1, l odd

x
µ−3
2 y

ν−1
2 z3 ŷ otherwise,

L (34)

where l and m are given by Equation (6) and µ and ν are given by Equation (8).
1 Solving the occultation problem is therefore a matter of evaluating the primitive
integrals of Gn (Equations 31 and 32). The solutions are in general tedious, but they
are all analytic, involving sines, cosines, and complete elliptic integrals. In Appendix D
we derive recurrence relations to quickly compute these. We note, in particular, that
the solutions all involve complete elliptic integrals of the same argument, so that the
elliptic integrals need only be evaluated once for a map of arbitrary degree, greatly
improving the evaluation speed and the scalability of the problem to high order. In
practice we find that the stability in evaluation of these expressions is improved by
using a rapidly converging series expansion for occultors of large and small radius.

3.3. Summary

Here we briefly summarize how to analytically compute the flux during an occul-
tation of a body whose specific intensity profile is described by a sum of spherical
harmonics. The first step is to compute the change-of-basis matrix A (§2.3) to convert

1 It is important to note that our definition of the Green’s basis (Equation 11) is by no means
unique. Rather, we imposed solutions of the form Gn = xiyjzk x̂ and Gn = xiyjzk ŷ and used
Equation (28) to find each of the terms in the basis, choosing i, j, and k to ensure the basis was
complete.

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/Gn.ipynb
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1

r

b

­φ

φ 2 +φ
2 +

occultor
(rotated frame)

occulted
(rotated frame)

(x0, y0)

occultor
(original frame)

Figure 2. Geometry of the occultation problem. The occulted body is centered at the
origin and has unit radius, while the occultor is centered at (xo, yo) and has radius r. The
observer is located at z =∞. We first rotate the two bodies about the origin through an
angle ω = π/2− arctan2(yo, xo) so the problem is symmetric about the y-axis. In this frame,
the occultor is located at (0, b), where b =

√
x2o + y2o is the impact parameter. The arc of the

occultor that overlaps the occulted body (thick red curve) now extends from π− φ to 2π+ φ,
measured from the center of the occultor. The arc of the occulted body that is visible during
the occultation (thick black curve) extends from π − λ to 2π + λ, measured from the origin.
These are the curves along which the primitive integrals (Equations 31 and 32) are evaluated.
The angles φ and λ are given by Equations (24) and (25) and extend from −π/2 to π/2. When
the occultor is completely within the disk of the occulted body, we define φ = λ = π/2. 6

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/geometry.py
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our vector of spherical harmonic coefficients to a vector of polynomial coefficients in the
Green’s basis (Equation 11). Since A is constant, this matrix may be pre-computed
for speed.

Then, given a body of unit radius with a surface map described by the vector of
spherical harmonic coefficients y (Equation 4), occulted by another body of radius r
centered at the point (xo, yo), and viewed by an observer located at z =∞, we must:

1. Compute the rotation matrix R to rotate the map to the correct viewing orien-
tation, which may be specified by the Euler angles α, β, and γ (Appendix C.1)
or by an axis u and an angle θ (Appendix C.2).

2. Compute the rotation matrix R′ to rotate the map by an angle ω about the
+z-axis (Equation 23) so the center of the occultor is a distance b =

√
x2o + y2o

along the +y-axis from the center of the occulted body.

3. Compute the solution vector s (Equation 30), with P(Gn) and Q(Gn) given by
the equations in Appendix D.2. Note that s2 is special and must be computed
separately (Equation D21).

Given these quantities, the total flux f during an occultation is then just

f = sTAR′Ry . (35)

4. THE STARRY CODE PACKAGE

The starry code package provides code to analytically compute light curves for
celestial bodies using the formalism developed in this paper. starry is coded entirely
in C++ for speed and wrapped in Python using pybind11 (Jakob et al. 2017) for quick
and easy light curve calculations. The code may be installed three different ways:
using conda (recommended),

1 conda install -c conda -forge starry

via pip,

1 pip install starry

or from source by cloning the GitHub repository,

1 git clone https :// github.com/rodluger/starry.git
2 cd starry
3 python setup.py develop

There are two primary ways of interfacing with starry: via the surface map class Map
and via the celestial body system class kepler.System. The former gives users the
most flexibility to create and manipulate surface maps and compute their fluxes for a

https://github.com/rodluger/starry
https://rodluger.github.io/starry/api.html#starry.Map
https://rodluger.github.io/starry/api.html#starry.kepler.System
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Figure 3. Rotation of the map given by Equation (36) about ŷ. 6

variety of applications, while the latter provides an easy way to generate light curves
for simple Keplerian systems. Let us discuss the map class first.

4.1. Creating a map

To begin using starry, execute the following in a Python environment:

1 from starry import Map

A starry Map is a vector of spherical harmonic coefficients, indexed by increasing
degree and order, as in Equation (4). As an example, we can create a map of spherical
harmonics up to degree lmax = 5 by typing

2 map = Map(lmax =5)

By default, the first coefficient (y0, the coefficient multiplying the Y0,0 harmonic) is
set to unity and all other coefficients are set to zero. Importantly, maps in starry
are normalized such that the average disk-integrated intensity is equal to the
coefficient of the Y0,0 harmonic. By default, the average amount of flux visible
from an unocculted map is therefore unity.

Say our surface map is given by the function

I(x, y) = Y0,0 − 2Y5,−3(x, y) + 2Y5,0(x, y) + Y5,4(x, y) . (36)

To create this map, we set the corresponding coefficients by direct assignment to the
(l, m) indices of the Map instance:

3 map[5, -3] = -2
4 map[5, 0] = 2
5 map[5, 4] = 1

Users can also directly access the spherical harmonic vector y, polynomial vector
p, and Green’s polynomial vector g via the read-only attributes Map.y, Map.p, and
Map.g, respectively. Once a map is instantiated, users may quickly visualize it by
calling

6 map.show()

or

7 map.animate ()

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/smiley.py
https://rodluger.github.io/starry/api.html#starry.Map
https://rodluger.github.io/starry/api.html#starry.Map
https://rodluger.github.io/starry/api.html#starry.Map.y
https://rodluger.github.io/starry/api.html#starry.Map.p
https://rodluger.github.io/starry/api.html#starry.Map.g
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Figure 4. A simplified two-color map of the cloudless Earth (top) and the corresponding
tenth-degree spherical harmonic expansion, rotated about ŷ (bottom). 6

where the editable attribute Map.axis defines the axis of rotation for the animation.
Rotation of this map about ŷ yields the sequence shown in Figure 3.

Alternatively, users may provide a two-dimensional numpy array of intensities
on a latitude-longitude grid or the path to an image file of the surface map on a
latitude-longitude grid:

8 map.load_image(array)

or

9 map.load_image("/path/to/image.jpg")

In both cases, starry uses the map2alm() function of the healpy package to find the
expansion of the map in terms of spherical harmonics. Keep in mind that if the image
contains very dark pixels (with RGB values close to zero), its spherical harmonic
expansion may lead to regions with negative specific intensity, which is of course
unphysical.

In Figure 4 we show a simplified two-color map of the cloudless Earth and its
corresponding starry instance for lmax = 10, rotated successively about ŷ.

4.2. Computing rotational phase curves

Once a map is instantiated, it is easy to compute its rotational phase curve, F:

10 F = map.flux(theta=theta)

where theta is an array of angles (in degrees) for which to compute the flux. Note that
rotations performed by Map.flux() are not cumulative; instead, all angles should be

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/earth.py
https://rodluger.github.io/starry/api.html#starry.Map.axis
https://rodluger.github.io/starry/api.html#starry.Map.flux
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Figure 5. Top: Phase curves for the first several spherical harmonics with order m ≥ 0
rotated about the x-axis (blue) and about the y-axis (orange). Odd harmonics with l > 1
and harmonics with m < 0 are in the phase curve null space (Cowan et al. 2013). Bottom:
Occultation light curves for the same set of harmonics. An occultor of radius r = 0.3 transits
the body along the +x direction at yo = 0.25 (blue) and yo = 0.75 (orange). 6 6

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/ylmphasecurves.py
https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/ylmlightcurves.py
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Figure 6. Phase curve for the Earth rotating about its axis, computed from the lmax = 10
expansion from Figure 4. The full rotational phase curve is shown in black, and the flux due
to each of the seven continents is shown as the colored curves (see legend). The black dots
correspond to the numerical solution (see §4.7). 6

specified relative to the original, unrotated map frame. As before, the axis of rotation
can be set via the Map.axis attribute. In the top panel of Figure 5 we plot rotational
phase curves for all spherical harmonics up to lmax = 6 for rotation about x̂ (blue
curves) and ŷ (orange curves). The small dots correspond to phase curves computed
by numerical evaluation of the flux on an adaptive radial mesh (see §4.7). As discussed
by Cowan et al. (2013), harmonics with odd l > 1 and those with m < 0 (not plotted)
are in the null space and therefore do not exhibit rotational phase variations when
rotated about x̂ or ŷ.

As a second example, we can compute the rotational phase curve of the simplified
Earth model (Figure 4) for rotation about ŷ (its actual spin axis) by executing

11 theta = np.linspace(0, 360, 100)
12 F = map.flux(theta=theta)

The variable F is an array of flux values computed from Equation (18); we plot this in
Figure 6, alongside the rotational phase curves due to each of the seven individual
continents. For more complex phase curves, such as those of planets on inclined orbits,
see §4.5.

4.3. Computing occultation light curves

Occultation light curves are similarly easy to compute:

13 F = map.flux(theta=theta , xo=xo, yo=yo, ro=ro)

where theta is the same as above, and xo, yo, and ro are the occultor parameters (x
position, y position, and radius, all in units of the occulted body’s radius), which may
be either scalars or arrays.

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/earthphasecurve.py
https://rodluger.github.io/starry/api.html#starry.Map.axis
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Figure 7. Occultation light curve for the Moon transiting the rotating Earth, computed
from the lmax = 10 expansion from Figure 4. The two largest dips are due to the occultations
of South America (left) and Africa (right). Once again, the black dots correspond to the
numerical solution (see §4.7). For reference, the light grey dots correspond to the rotational
light curve in the absence of the occultor. 6

In the bottom panel of Figure 5 we plot occultation light curves for the spherical
harmonics with m ≥ 0 up to lmax = 6. The occultor has radius r = 0.3 and moves
at a constant speed along the x direction at yo = 0.25 (blue curves) and yo = 0.75

(orange curves). The light curve of any body undergoing such an occultation can be
expressed as a weighted sum of these light curves. Note that because the value of
individual spherical harmonics can be negative, an increase in the flux is visible at
certain points during the occultation; however, this would of course not occur for
any physical map constructed from a linear combination of the spherical harmonics.
Note also that unlike in the case of rotational phase curves, there is no null space for
occultations, as all spherical harmonics (including those with m < 0, which are not
shown) produce a flux signal during occultation. As before, the numerical solutions
are shown as the small dots.

To further illustrate the code, we return to our spherical harmonic expansion of the
Earth. Figure 7 shows an occultation light curve computed for a hypothetical transit
of the Earth by the Moon. The occultation lasts about four hours, during which time
the sub-observer point rotates from Africa to South America, causing a steady flux
decrease as the Pacific Ocean rotates into view. The occultation is double-dipped:
one dip due to the occultation of South America, and one dip due to the occultation
of Africa.

4.4. Computing light curves of limb-darkened bodies

The formalism developed in this paper can easily be extended to the case of
occultations of limb-darkened maps (such as transits of planets across stars) by noting
that any radially symmetric specific intensity profile can be expressed as a sum over

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/earthoccultation.py
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the m = 0 spherical harmonics (see Figure 1). In particular, Agol & Luger (2018)
show how a limb darkening profile that is an order l polynomial function of the radial
coordinate, µ = z =

√
1− x2 − y2, can be exactly expressed in terms of the m = 0

spherical harmonics up to order l.
All Map instances in starry have an additional read-only attribute, Map.u, which

stores the limb darkening coefficients {u1, u2, u3, ...} of the map. These are all zero by
default, and can be changed by direct assignment to index l of the map instance:2

14 map[1] = u1
15 map[2] = u2
16 ...
17 map[lmax] = ulmax

In the case of quadratic limb darkening (lmax = 2), this sets the map’s limb darkening
profile to

I(µ)

I(1)
= 1− u1(1− µ)− u2(1− µ)2 , (37)

with µ given above. It is straightforward to show that this corresponds to the spherical
harmonic sum

I(x, y)

I(1)
=

2
√
π

3
(3− 3u1 − 4u2)Y0,0 +

2
√
π√
3

(u1 + 2u2)Y1,0 −
4
√
π

3
√

5
u2 Y2,0 , L (38)

where we set

I(1) =
1

π(1− 1
3
u1 − 1

6
u2)

(39)

to enforce the integral of the specific intensity over the visible disk is unity. Limb
darkening profiles of arbitrary degree are supported in starry, and in all cases the
corresponding light curve is computed analytically.

Note, importantly, that the limb darkening coefficients are treated separately
from the spherical harmonic coefficients in starry. In particular, the limb darkening
profile does not rotate along with the rest of the map when a rotation is applied.
Moreover, while most users will find it sufficient to specify either the spherical harmonic
coefficients or the limb darkening coefficients of a surface map, it is also possible to
specify both. This may be convenient in the case of a limb-darkened star with rotating
starspots or other surface inhomogeneities. In this case, the limb darkening coefficients
are applied to the map as a multiplicative filter following any requested rotation

2 Remember: the (l, m) index of a map instance corresponds to the coefficient of the Yl,m spherical
harmonic, while the (single) l index corresponds to the coefficient of the lth order limb darkening
term. Note, importantly, that the l = 0 limb darkening coefficient cannot be set, as it is automatically
computed to enforce the correct normalization.

https://rodluger.github.io/starry/api.html#starry.Map
https://rodluger.github.io/starry/api.html#starry.Map.u
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/qldylm.ipynb
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operations. Since products of spherical harmonics are spherical harmonics, applying
limb darkening to a spherical harmonic map simply raises its degree by an amount
equal to the degree of the limb darkening profile. Hence users must be careful not
to exceed the maximum degree of the map when setting limb darkening coefficients.
For instance, a map instantiated with lmax=10 having nonzero spherical harmonic
coefficients up to degree l = 5 can have at most fifth order (l = 5) limb darkening.

In principle, one could also model limb-darkened planetary atmospheres in this
fashion, but we do not in general recommend this. Inhomogeneities in the planetary
atmosphere could lead to asymmetries in the limb darkening, which should probably
be treated using a radiative transfer model.

Figure 8 shows the light curve of a planet transit across a quadratically limb-
darkened star with u1 = 0.4, u2 = 0.26 computed using starry. The planet/star
radius ratio is r = 0.1 and the planet transits at impact parameter b = 0.5. For
comparison, we also compute the flux with batman (Kreidberg 2015) and with a
high precision numerical integration of the surface integral of Equation (37) using
the scipy.integrate.dblquad (Jones et al. 2001) routine with a tolerance of 10−14. The
relative error on the flux for starry flux is less than 10−7 parts per million everywhere
in the light curve.

4.5. Photodynamics

The Map class discussed above is convenient when the rotational state of the body
in question and/or the position of the occultor is known, or when these can easily be
computed by some other means. For convenience, starry implements a Keplerian solver
to compute light curves of simple star-planet, star-star, or planet-moon systems given
the orbital parameters as input. Users can access this functionality by instantiating a
kepler.Primary and any number of kepler.Secondary objects, then passing them to a
kepler.System instance. As an example, let us create a central star:

18 from starry.kepler import Primary
19 star = Primary(lmax =2)

A kepler.Primary instance has unit radius and unit luminosity; the secondary bodies’
radii, semi-major axes, and luminosities are all defined relative to these values. All
kepler.Primary and kepler.Secondary instances derive from the Map class, so we can
limb-darken the star in the same way as before:

20 star [1] = 0.40
21 star [2] = 0.26

where we arbitrarily set u1 = 0.40 and u2 = 0.26. Next, we will instantiate a planet
by typing

22 from starry.kepler import Secondary
23 planet = Secondary(lmax =1)

https://rodluger.github.io/starry/api.html#starry.Map
https://rodluger.github.io/starry/api.html#starry.kepler.Primary
https://rodluger.github.io/starry/api.html#starry.kepler.Secondary
https://rodluger.github.io/starry/api.html#starry.kepler.System
https://rodluger.github.io/starry/api.html#starry.kepler.Primary
https://rodluger.github.io/starry/api.html#starry.kepler.Primary
https://rodluger.github.io/starry/api.html#starry.kepler.Secondary
https://rodluger.github.io/starry/api.html#starry.Map
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Figure 8. Sample transit light curve for a planet (r = 0.1) transiting a quadratically
limb-darkened star (u1 = 0.4, u2 = 0.26). The top panel shows the starry (blue curve) and
batman (orange dots) light curves, as well as a light curve generated by a high precision
direct numerical integration of the surface integral (purple dots). The bottom panel shows
the relative error on the flux compared to the high precision numerical solution for starry
(blue) and batman (orange). 6

Let us set its orbital parameters as follows:

24 planet.r = 0.1 # Radius in units of primary radius
25 planet.L = 5.e-3 # Luminosity in units of primary
26 planet.a = 50 # Semi -major axis in units of primary
27 planet.inc = 90 # Inclination in degrees
28 planet.ecc = 0 # Eccentricity
29 planet.w = 90 # Longitude of pericenter in degrees
30 planet.Omega = 0 # Longitude of ascending node in degrees
31 planet.lambda0 = 90 # Mean longitude in deg. at the ref. time
32 planet.tref = 0 # Reference time in days
33 planet.porb = 4.3 # Orbital period in days
34 planet.prot = 4.3 # Rotational period in days

These properties, along with their default values, are detailed in full in the documen-
tation.

Suppose we wish to give the planet a simple dipole map (Y1,0) with peak brightness
at the sub-stellar point. starry expects the planet map to be instantiated at an eclipsing

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/transit.py
https://rodluger.github.io/starry/api.html#starry.kepler.Secondary
https://rodluger.github.io/starry/api.html#starry.kepler.Secondary
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configuration (full phase), so we want to set the coefficient for the Y1,0 harmonic (see
Figure 1):

35 planet[1, 0] = 0.5

Finally, care should be taken to ensure the map is positive everywhere. By default, the
coefficient of the Y0,0 term of a map is fixed at unity, since changing this term would
change the total luminosity (this should instead be modified via the kepler.Secondary.L
property). In the case of a simple dipole map of the form Y0,0 + y1Y1,−1 + y2Y1,0 + y3Y1,1,
it can be shown that as long as we enforce

y21 + y22 + y23 ≤
1

3
L (40)

the map will be non-negative everywhere along the unit sphere. Since 0.52 < 1/3, our
map is in fact positive semi-definite. For more details on ensuring surface maps are
positive everywhere, see §5.4.

We are now ready to instantiate the planetary system:

36 from starry.kepler import System
37 system = System(star , planet)

(note that the primary body must always be listed first). We can now compute the
full light curve:

38 system.compute(time)

where time is the array of times (in days) at which to compute the light curve. This
command internally calls the Map.flux() method of each of the surface maps, populating
the flux attribute of each body with its respective light curve. The total light curve
(the sum of the light curves of each of the bodies in the system, including the star)
is stored in kepler.System.lightcurve. The top panel of Figure 9 shows the light curve
for the system we instantiated above: both the transits and secondary eclipses of
the planet are clearly visible. For flair, we added a hotspot offset of 15◦ to simulate
advection of heat by an eastward wind, causing the peak of the planet’s phase curve
to occur slightly before secondary eclipse (refer to the Python script for details).

The bottom panel of the figure shows a two-planet system with more elaborate
surface maps. In addition to the transits, eclipses, and complex phase curve morphology,
several planet-planet occultations are also visible in the light curve.

4.6. Gradients of the light curves

Since all expressions derived in this paper are analytic, so too are their derivatives.
The ability to compute derivatives of a light curve model with respect to the model
parameters can be extremely useful in both optimization and inference problems.
When fitting a model to data with an optimization algorithm, knowledge of the

https://rodluger.github.io/starry/api.html#starry.kepler.Secondary.L
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/l1positive.ipynb
https://rodluger.github.io/starry/api.html#starry.Map.flux
https://rodluger.github.io/starry/api.html#starry.kepler.System.lightcurve
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Figure 9. Sample analytic exoplanet system light curves computed with starry. Top: a hot
Jupiter transiting a Sun-like star. The planet’s map is a simple dipole, with the hotspot offset
15◦ from stellar noon; the offset in the secondary eclipse from the peak of the phase curve is
apparent. Bottom: a two-planet system with more complex surface maps. In addition to
transits and secondary eclipses, a few planet-planet occultations are visible (e.g., the very
short events at t = 0.1 and t = 3.4 days). 6

gradient of the objective function can greatly speed up convergence, as the optimizer
always “knows” which direction to take a step in to improve the fit. Gradients can
also be used in Hamiltonian Monte Carlo (HMC) simulations, in which the gradient
of the likelihood is used to improve the efficiency of the sampler and greatly speed up
convergence of the chains (e.g., Betancourt 2017).

In principle, one could differentiate the recurrence relations in the Appendix and
arrive at expressions for the derivatives of a light curve with respect to any of the
input parameters. Pál (2008) derived gradients in this fashion for the case of transits
across a quadratically limb-darkened star. However, for the complex surface maps we
consider here, differentiating all our equations would be an extremely tedious task.
Instead, we can take advantage of the analytic nature of our expressions and compute
all derivatives using automatic differentiation (autodiff; e.g., Wengert 1964). Despite
the complexity of the expressions we derive here, each of the individual steps involved
in computing a light curve is either a basic arithmetic operation or the evaluation of
an elementary function and is therefore trivially differentiable. Autodiff algorithms
exploit this fact by repeatedly applying the chain rule to compute the derivatives of
any function during its evaluation, returning derivatives that can be accurate to high
precision and at a speed that can be significantly greater than that of numeric (or
symbolic) differentiation.

We employ the autodiff algorithm of the Eigen (Guennebaud et al. 2010) C++
library to compute derivatives of the flux with respect to all input parameters. Although

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/system.py
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fast, evaluation of the derivatives introduces overhead to the computation and is
therefore disabled by default. To enable it, users should pass the gradient=True
keyword argument to Map.flux() or kepler.System.compute(). In the former case, the
gradient is returned in a tuple alongside the flux; in the latter, the gradient of the
total light curve is stored in the gradient property of the system, and the gradient of
each body’s light curve is stored in that body’s own gradient property. As an example,
let us instantiate a Map class and compute the flux at one point during an occultation:

39 map = Map(lmax =1)
40 map[1, 0] = 0.5
41 flux , gradient = map.flux(theta=30, xo=0.1, yo=0.1, ro=0.1,
42 gradient=True)

Running the code above returns the value of the flux, 1.48216..., as well as a dictionary
of derivatives of the flux with respect to all input parameters:

43 {'theta': array ([ -0.0049768]) ,
44 'xo': array ([ -0.00356856]) ,
45 'yo': array ([0.00076157]) ,
46 'ro': array ([ -0.35638527]) ,
47 'y': array ([[ 0.99 ],
48 [ -0.00173205] ,
49 [ 0.98432307] ,
50 [ -0.57029919]]) ,
51 'u': array ([])}

These are the derivatives with respect to the rotational phase, the position and radius
of the occultor, and each of the spherical harmonic and limb darkening coefficients.
Figure 10 shows an example of the autodiff capabilities of starry for a transit and a
secondary eclipse of a hot Jupiter.

4.7. Benchmarks

We validate all our calculations of rotational phase curves and occultation light
curves by comparing them to numerical solutions of the corresponding surface integrals.
We integrate the specific intensity of the body by discretely summing over its surface
map on an adaptive radial mesh whose resolution is iteratively increased wherever the
spatial gradient of the specific intensity is large and in the vicinity of the limb of the
occultor.

All light curves in Figure 5 show the flux computed in this way as the small
points along each of the curves. We find that our analytic light curves agree with the
numerical solutions to within the error of the latter, which is on the order of 10−5.

To test for numerical stability, we also compare our calculations to the same
calculations performed at quadruple (128-bit) floating-point precision. Figure 11
shows the relative error on the computation of each of the terms in the solution vector
s up to l = 20 for a small occultor (left) and a large occultor (right). The horizontal
axis corresponds to the impact parameter, spanning all possible values of b during an

https://rodluger.github.io/starry/api.html#starry.Map.flux
https://rodluger.github.io/starry/api.html#starry.kepler.System.compute
https://rodluger.github.io/starry/api.html#starry.Map
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Figure 10. Transit (top left) and secondary eclipse (top right) of a mildly eccentric, slightly
inclined, quickly-rotating hot Jupiter with a dipole map, computed with starry. Derivatives as
a function of time for several of these parameters are plotted in orange below each light curve.
Solid lines correspond to the analytic derivatives and dots correspond to derivatives evaluated
numerically using finite differences. From top to bottom, the curves correspond to derivatives
with respect to time, planet radius, planet luminosity, orbital period, eccentricity, inclination,
longitude of pericenter, rotational period, five of the planet surface map coefficients, and the
linear and quadratic stellar limb darkening coefficients. 6

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/autodiff.py
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Figure 11. Error in the terms of the solution vector s for a small occultor (r = 0.01, left)
and a large occultor (r = 100, right), computed relative to calculations using quadruple
floating point precision. The error is plotted as a function of impact parameter for terms
with µ even (left) and µ odd (right). The horizontal axis extends from 0 to r + 1 (left panel)
r− 1 to r+ 1 (right panel) and covers the entire range of b during an occultation, with extra
resolution near potentially unstable regions. The top panel shows the relative error and the
bottom panel shows the fractional error, scaled to the largest value of s over the course of
the occultation. 6
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Figure 12. Similar to Figure 11, but showing instead the error on the derivative of the
flux with respect to the impact parameter computed analytically with autodifferentiation.
The error is computed relative to a numerical derivative computed at 128 bit precision. 6

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/stability.py
https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/stability_grad.py
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Figure 13. Secondary eclipse ingress for the Earth being occulted by the Sun (r = 110),
computed for a l = 20 expansion of the planet’s surface map. The relative error due to
floating point precision loss is shown at the bottom and is less than one part per billion
everywhere. 6

occultation. In both cases, the maximum relative error (top panel) is less than one
part per trillion. The bottom panel shows the fractional error, equal to the relative
error scaled to the largest value of the function during the occultation. In cases where
the largest value of the flux is less than 10−9, we scale the relative error to this value
to avoid division by a very small number. In all cases, the fractional error is less than
1 ppb.

In Figure 12 we show similar curves for the numerical error on the derivative of the
flux with respect to the impact parameter. While the derivatives are in general more
prone to numerical instabilities, particularly in the limits b→ |1− r| and b→ 1 + r,
we find that the error is less than 1 ppb over most of the domain for both small and
large occultors. For large values of l near the unstable regions, the error approaches 1
ppm.

Figure 13 shows the error on a secondary eclipse light curve for an l = 20 expansion
of the Earth being occulted by the Sun. As expected, the relative error (relative to
the Earth’s flux) is much less than 1 part per billion everywhere.

Finally, we compare our secondary eclipse and phase curve computations to light
curves generated using the spiderman package (Louden & Kreidberg 2018). The top

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/stability.py
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Figure 14. Comparison to a light curve generated using the spiderman code (Louden &
Kreidberg 2018). The top panel shows a secondary eclipse of a hot Jupiter with an offset
dipole computed with starry (solid grey) and spiderman (dashed blue), and the bottom panel
shows the absolute value of the difference between the two light curves as the number of
layers in the spiderman grid is increased. The spiderman solution slowly approaches the starry
solution as the number of layers is increased. 6

panel of Figure 14 shows a secondary eclipse light curve for a hot Jupiter with an offset
dipole map (l = 1) computed with starry (solid blue) and spiderman (dashed orange)
using the default number of layers (nlayers = 5) in their discretized surface intensity
grid. The bottom panel shows the relative difference between the spiderman flux and
the starry flux for different values of nlayers. For the default number of layers, the
maximum relative error in the spiderman flux is on the order of 30 ppm (relative to the
stellar flux) during ingress and egress and is somewhat higher at the peak of the phase
curve. Relative to the planet flux, the error is more significant: ∼ 30/0.004 = 7500

ppm. This error decreases linearly as the number of layers increases, and the spiderman
solution appears to approach the starry solution in the limit nlayers →∞.

4.8. Speed tests

Figure 15 shows the evaluation time for occultation calculations as a function of
the spherical harmonic degree l of the map. Analytic solutions computed with starry
are shown as the blue dots (purple dots for solutions with gradients enabled). Also
shown are calculations using the adaptive mesh technique described in the previous

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/spidercomp.py
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Figure 15. Evaluation time for a single occultation calculation as a function of the spherical
harmonic degree of the map using starry (blue), starry with gradients (purple), the adaptive
mesh technique (§4.7, orange), brute force integration on a Cartesian grid (green), and
scipy’s dblquad two-dimensional numerical integration routine (red). The size of each point is
proportional to the log of the error relative to the starry quadruple-precision solution. 6

section (orange dots), brute-force integration on a 300×300 Cartesian grid (green
dots), and numerical evaluation of the double integral using the scipy.integrate.dblquad
(Jones et al. 2001) routine (red). The size of each point is proportional to the log of
the fractional error relative to the starry quadruple floating-point precision solution.
Light curve computation using starry is several orders of magnitude faster and more
accurate than any other evaluation technique.

Figure 16 shows the evaluation time for starry as a function of the number of points
in the light curve for phase curves (left) and occultation light curves (right). The
top panel shows curves for maps of different degree l, and the bottom panel shows
curves for single-order maps of degree l = 5. Evaluation time scales exponentially
with increasing degree, but starry can compute full occultation light curves for l = 5

maps with 105 points in under one second. Evaluation time is roughly constant
across the different orders at fixed degree. In Figure 17 we show a speed comparison
to the batman transit package (Kreidberg 2015) for transits across a quadratically
limb-darkened star. starry is as efficient as batman at computing transit light curves.

Finally, Figure 18 shows the evaluation time for starry compared to that for
spiderman (Louden & Kreidberg 2018) for a secondary eclipse of a simple l = 1 map
and varying values of the number of layers in the spiderman grid. The size of the
points is proportional to the log of the relative error on the solution (see Figure 14).
The evaluation time for starry is about one order of magnitude less than spiderman
for the default nlayers = 5, for which the error is about 30 ppm (relative to the stellar

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/speed.py
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Figure 16. Speed tests for starry, showing the light curve evaluation time as a function of
number of light curve points for rotational phase curves (left) and occultation light curves
(right) of individual spherical harmonics. The top panels show the evaluation time for
spherical harmonics of different degrees l, averaged over all orders m. The bottom panels
show the time for each of the non-negative orders (m ≥ 0) of the l = 5 harmonics. 6
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Figure 17. Speed comparison to the batman transit modeling package (Kreidberg 2015)
for a hot Jupiter transit across a quadratically limb-darkened star. 6

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/speed.py
https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/speed_batman.py
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Figure 18. Speed comparison to the spiderman code package (Louden & Kreidberg 2018).
For a dipole (l = 1) map, starry computes secondary eclipse light curves and phase curves
in about an order of magnitude less time compared to spiderman with 5 layers in their
surface intensity grid. The size of the markers is proportional to the log of the error in the
solutions, compared to evaluation of the equations presented in this paper using quadruple
floating-point precision. As the number of layers is increased in spiderman, the error decreases
linearly, but the evaluation time increases proportionally. 6

flux). Computation of the spiderman light curves with larger values of nlayers improves
the precision but leads to proportionally longer evaluation times.

4.9. Application to real data: HD 189733b

As a brief example of the application of starry to a real dataset, we analyzed the
well-studied Spitzer/IRAC 8 µm secondary eclipse light curve of the hot jupiter HD
189733b from Knutson et al. (2007). Our analysis is very similar to that of Majeau
et al. (2012), who also fit a spherical harmonic map to the secondary eclipse data, but
evaluated their model numerically. We fit for the l = 1 map coefficients and the planet
luminosity, holding the orbital parameters constant for simplicity. Unlike Majeau
et al. (2012), we fit each of the nearly 128,000 observations in the timeseries without
binning. We first find the maximum likelihood fit to the data using gradient-descent
optimization, then initialize an MCMC sampler in a Gaussian ball about this solution
and run a chain of 40 walkers for 10,000 steps using the emcee package (Foreman-
Mackey et al. 2013). At a rate of about one million flux evaluations per second, the
full calculation took on the order of 10 CPU hours. Note that this is almost certainly
overkill; given the extremely low signal-to-noise ratio of each measurement, binning
the dataset in time could allow for runtimes of less than one hour that would yield
virtually the same results.

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/spidercomp.py
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Figure 19. Secondary eclipse light curve of HD 189733b observed with Spitzer/IRAC at
8 µm from Knutson et al. (2007) along with our fit to the data. The inset at the top left
shows a zoomed-out version of the timeseries. 6

Figure 19 shows the secondary eclipse light curve and our median model fit to the
data. Figure 20 shows the marginalized posteriors and covariances of our four model
parameters, as well as the latitude (φ̂) and longitude (θ̂) of the hotspot relative to the
substellar point. A map corresponding to the maximum likelihood model is plotted at
the top right, showing a statistically significant eastward offset in the location of the
hotspot in agreement with previous studies (Knutson et al. 2007; Majeau et al. 2012;
de Wit et al. 2012). There is also evidence for a slight northward offset, although
it is less statistically significant and consistent with zero. Note that because we did
not simultaneously fit phasecurve data, there is a strong degeneracy between the
planet’s total luminosity and the Y1,0 spherical harmonic coefficient. Moreover, since
we did not account for the uncertainty in the planet’s orbital parameters, we are likely
underestimating the uncertainty on the map coefficients.

5. CAVEATS

5.1. Wavelength dependence

In our formalism thus far we have avoided mention of wavelength dependence of a
body’s surface map. In our derivations we treated the specific intensity at a point on
the body’s map as a scalar: a single number corresponding to the total power emitted
to space by an infinitesimal area element on the body’s surface. When applying
starry to actual data, this intensity can either be the power integrated over a range of

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/hd189733b.py
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Figure 20. Posterior distributions of our model parameters from the fit to the HD189733b
secondary eclipse, plotted using the corner package (Foreman-Mackey 2016). We fit for the
spherical harmonic coefficients Y1,−1, Y1,0, and Y1,1, as well as the planet luminosity L. The
latitude φ̂ and longitude θ̂ of the hotspot were calculated from these coefficients. The median
value of each parameter was used to generate the map of HD189733b shown in the upper
right. An X marks the inferred location of the hotspot and contour levels indicate 10%
drops in specific intensity. For reference, a latitude/longitude grid is superimposed with cells
measuring 15◦ on a side. 6

wavelengths, in which case the light curve has units of flux proper, corresponding to
(say) the quantity measured by an instrument performing filter photometry; or the
power at a specific wavelength, in which case the light curve computed by starry has
units of spectral flux, corresponding to (say) the flux measured in a tiny wavelength
bin by a spectrometer. Note, importantly, that in the former case the “surface map” is

https://github.com/rodluger/starry/blob/v0.2.2/tex/figures/hd189733b.py
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in reality the integral of the body’s wavelength-dependent specific intensity convolved
with the instrument’s spectral response function over a given wavelength range.

Alternatively, inspection of Equation (35) suggests that the methods outlined above
for computing light curves can be trivially extended to wavelength-dependent maps.
Since neither the solution vector, the change of basis matrix, nor the rotation matrices
depend on the values of the map coefficients, one can compute a wavelength-dependent
light curve as

f = sTAR′RY , (41)

where f is the vector of fluxes, one per wavelength bin, and Y is now a matrix of
spherical harmonic coefficients, where each column is the usual y vector corresponding
to a specific wavelength bin. This method makes it extremely fast to compute
wavelength-dependent light curves, since the solution vector and rotation matrices
need only be computed once for all wavelength bins.

In starry, users can set the nwav keyword argument when instantiating maps to
indicate the number of wavelength bins (the default is 1). For multi-wavelength maps,
the coefficient at a given value of (l, m) is a vector, corresponding to the value of
the spherical harmonic coefficient in each wavelength bin. All intensities, fluxes, and
gradients computed by starry gain an extra dimension in this case.

5.2. Reflectance light curves

At present, starry can only compute thermal phase curves and occultation light
curves for planets and moons. Reflectance light curves are significantly more difficult
to compute analytically because of the sharp discontinuity in the illumination gradient
at the terminator. In principle, the stellar illumination pattern could be modeled
with a high order spherical harmonic expansion, but this approach cannot accurately
capture the sharp day/night transition at the terminator and typically leads to spurious
ringing on the night side. A better approach is to treat the terminator as one of
the boundaries of the surface integral and use Green’s theorem to compute the line
integral about this elliptical curve. This will be the topic of a future paper and will
be implemented in future versions of the code.

5.3. Anisotropic emission

It is important to note that the formalism developed here for computing light curves
(excepting our treatment of limb darkening) implicitly assumes isotropic emission from
the body’s surface. While this is usually an appropriate assumption for emission, it
could break down due to scattering by, say, clouds or hazes in a planet’s atmosphere.

5.4. Physical surface maps

While spherical harmonics are a convenient way to approximate surface maps of
celestial bodies, it is not trivial to ensure that a given spherical harmonic expansion
y evaluates to non-negative values everywhere on the unit sphere. This is because
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there is no analytic way to compute the extrema of a function of spherical harmonics
of arbitrary degree. This fact makes it difficult to enforce the physical prior that the
specific intensity of a celestial body cannot be negative, which could be desirable when
fitting a model to real data. The minimum can, of course, be found numerically. In
starry, users can check whether a map is positive semi-definite (P.S.D.) by evaluating

52 map.is_physical ()

which returns either True (the map is non-negative everywhere) or False (at least one
region on the map has a negative specific intensity). This method evaluates the surface
map on a coarse grid in θ and φ, locates the approximate location of the minimum,
and performs a gradient-descent optimization to locate the global minimum of the
map.

Note that if any limb darkening coefficients are set, this method will separately
determine whether the limb darkening profile is physical by ensuring that it is positive
everywhere and monotonically decreasing toward the limb.

5.5. Maps of very large degree

For very large values of the spherical harmonic degree l, the equations presented
here may become numerically unstable. The evaluation of the spherical harmonics
depends on ratios of several factorials, whose precision can degrade for large l and m.
Similarly, the coefficients of the occultation solution vector s can drop below machine
precision at large l, leading to further numerical issues. While starry is specifically
coded up to minimize numerical instabilities, we find that for lmax ≥ 30 numerical
issues may occur. Fortunately, situations in which maps of such high degree are
necessary are not likely for exoplanet science in the foreseeable future. Nevertheless,
if users wish to perform calculations for very large l, they can avoid these numerical
issues by instantiating a multi-precision map:

53 map = Map(multi=True)

By default, this will perform all calculations using quadruple (128-bit) floating point
precision. We caution, however, that this will increase computation time by at least
an order of magnitude.

5.6. Three-body events

The occultation formalism developed in this paper applies specifically to the case
of a single occultor, so starry cannot at present handle mutual occultations involving
more than two bodies; if a three-body event occurs, the computed flux will be incorrect.
However, even for an arbitrary number of bodies the problem is still analytic, since
Green’s theorem may be employed in the same way, but instead evaluating the line
integrals along the more complex network of arcs defining the edges of the visible
portion of the body’s surface. This was first noted by Pál (2012), whose mttr code
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computes analytic transit light curves for mutually overlapping bodies such as a
transiting planet with a moon. Future versions of starry will extend the calculations
to this general case.

6. CONCLUSIONS

In this paper, we derived a formalism to compute analytic thermal light curves of
celestial bodies in occultation, provided their specific intensity maps can be expressed
as a sum of spherical harmonics. Our expressions extend the analytic results of
the Mandel & Agol (2002) transit model for limb-darkened stars to transits and
occultations of celestial bodies whose surface maps are not radially symmetric and/or
possess higher order features, and are thus generally applicable to stars, planets, and
moons. We derived recurrence relations to quickly compute occultation light curves
for surface maps expressed at arbitrary spherical harmonic degree. We showed, in
particular, that the flux contribution from higher degree terms depends on the same
elliptic integrals as the linear limb darkening term, so these need only be evaluated once
per light curve cadence. This results in evaluation times for higher degree maps that
are extremely fast, and only marginally slower than in the quadratic limb darkening
case. In the limit of zero occultor size, our expressions trivially reduce to equations
for thermal phase curves of celestial bodies.

We introduced starry, a Python-wrapped model coded in C++ that can be used to
compute phase curves and occultation light curves for individual celestial bodies or
entire exoplanet systems. starry computes transits, secondary eclipses, phase curves,
and planet-planet occultations analytically and is comparable in speed to other transit-
modeling packages such as batman (Kreidberg 2015). Because the light curves are
all analytic, starry can also easily compute analytic gradients of the light curves
with respect to all input parameters via autodifferentiation, facilitating its interface
with gradient-based inference schemes such as Hamiltonian Monte Carlo (HMC) or
gradient-descent optimization methods.

Although we have in mind the application of this starry to exoplanets, it could
in principle be applied to eclipsing binaries as well. If the deformation of the body
is small and reflection is negligible, as is the case for long orbital periods, then the
surface brightness of each star can be decomposed into spherical harmonics, and the
starry formalism may be used to integrate their phase curves and eclipses. One could
imagine applying starry, for instance, to secondary eclipses of white dwarfs to search
for non-uniform surface brightness.

At present, starry supports only monochromatic surface maps, making it ideally
suited for the modeling of light curves collected via filter photometry, but future work
will extend it to spectrophotometry. starry is also limited to thermal light curves of
planets and moons, since the discontinuity in the gradient of the illumination pattern
at the terminator makes it more challenging to analytically solve the surface integrals
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in reflected light. However, an analytic solution is likely to exist, and future work
aims to extend starry to this case.

The upcoming James Webb Space Telescope (JWST) and eventual next-generation
telescopes such as the Origins Space Telescope (OST) will measure exoplanet secondary
eclipses and phase curves in the thermal infrared to unprecedented precision. starry
can compute extremely fast and high-precision models for these light curves, enabling
the reconstruction of two-dimensional maps of these alien worlds.

The starry code is open source under the GNU General Public License and
is available at https://github.com/rodluger/starry, with documentation and
tutorials hosted at https://rodluger.github.io/starry. A permanent version
of the code used to generate the figures and results in this paper is archived at
https://doi.org/10.5281/zenodo.1312286. This work was supported by the NASA
Astrobiology Institute’s Virtual Planetary Laboratory under Cooperative Agreement
number NNA13AA93A. EA is supported by NSF grant 1615315. Some of the results
in this paper have been derived using the HEALPix (Górski et al. 2005) package.

Software: starry v0.1.2 (Luger et al. 2018), HEALPix (Gorski et al. 2005),
emcee (Foreman-Mackey et al. 2013), corner.py (Foreman-Mackey 2016), batman
(Kreidberg 2015), spiderman (Louden and Kreidberg 2017), pybind11 (Jakob et al.
2017), Eigen v3 (Guennebaud et al. 2010), scipy (Jones et al. 2001).
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APPENDIX

A. SPHERICAL HARMONICS

In spherical coordinates, the spherical harmonics may be compactly represented as
in Equation (1). The formalism in this paper requires us to express them in Cartesian
form, which is somewhat more cumbersome but still tractable. Using Equation (2)
and expanding Equation (1) via the multiple angle formula, we obtain

Ylm(x, y, z) =

(
1√

1− z2

)|m|


P̄lm(z)
m∑

j even

(−1)
j
2

(
m

j

)
xm−jyj m ≥ 0

P̄l|m|(z)

|m|∑
j odd

(−1)
j−1
2

(
|m|
j

)
x|m|−jyj m < 0 ,

(A1)

where
(·
·
)
is the binomial coefficient. The normalized associated Legendre functions

are defined as

P̄lm(z) = Alm

(√
1− z2

)m dm

dzm

[
1

2ll!

dl

dzl
(
z2 − 1

)l]
, (A2)

where

Alm =

√
(2− δm0)(2l + 1)(l −m)!

4π(l +m)!
. (A3)

Expanding out the z derivatives, we obtain

P̄lm(z) = Alm

(√
1− z2

)m l−m∑
k=0

2l
(
l+m+k−1

2

)
!

k!(l −m− k)!
(−l+m+k−1

2

)
!
zk , (A4)

which we combine with the previous results to write

Ylm(x, y, z) =



m∑
j even

l−m∑
k=0

(−1)
j
2 AlmB

jk
lmx

m−jyjzk m ≥ 0

|m|∑
j odd

l−|m|∑
k=0

(−1)
j−1
2 Al|m|B

jk
l|m|x

|m|−jyjzk m < 0

L (A5)

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/ylmxyz.ipynb


41

where

Bjk
lm =

2lm!
(
l+m+k−1

2

)
!

j!k!(m− j)!(l −m− k)!
(−l+m+k−1

2

)
!
. (A6)

Since we are confined to the surface of the unit sphere, we have z =
√

1− x2 − y2
and we may expand zk using the binomial theorem:

zk = (1− x2 − y2)
k
2

=



k∑
p even

p∑
q even

(−1)
p
2Ck

pqx
p−qyq k even

k−1∑
p even

p∑
q even

(−1)
p
2Ck−1

pq xp−qyq
√

1− x2 − y2 k odd ,

(A7)

where

Ck
pq =

(
k
2

)
!(

q
2

)
!
(
k−p
2

)
!
(
p−q
2

)
!
. (A8)

This gives us an expression for the spherical harmonics Ylm as a function of x and y
only:

Ylm(x, y) =



m∑
j even

l−m∑
k even

k∑
p even

p∑
q even

(−1)
j+p
2 AlmB

jk
lmC

k
pqx

m−j+p−qyj+q +

m∑
j even

l−m∑
k odd

k−1∑
p even

p∑
q even

(−1)
j+p
2 AlmB

jk
lmC

k−1
pq xm−j+p−qyj+qz

m ≥ 0

|m|∑
j odd

l−|m|∑
k even

k∑
p even

p∑
q even

(−1)
j+p−1

2 Al|m|B
jk
l|m|C

k
pqx
|m|−j+p−qyj+q +

|m|∑
j odd

l−|m|∑
k odd

k−1∑
p even

p∑
q even

(−1)
j+p−1

2 Al|m|B
jk
l|m|C

k−1
pq x|m|−j+p−qyj+qz

m < 0

L (A9)

where z = z(x, y) =
√

1− x2 − y2. Evaluating the nested sums may be computation-
ally slow, but these operations need only be performed a single time to construct our
change of basis matrix (following section).

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/ylmxyz.ipynb
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B. CHANGE OF BASIS

In this section we discuss how to compute the change of basis matrices A1 and
A2 from §2.3 and provide links to Jupyter scripts to compute them. Recall that the
columns of the change of basis matrix from spherical harmonics to polynomials, A1,
are just the polynomial vectors corresponding to each of the spherical harmonics in
Equation (4). From Equations (7) and (A9), we can calculate the first few spherical
harmonics and their corresponding polynomial vectors:

Y0,0 = 1
2
√
π

p = 1
2
√
π

(
1 0 0 0 · · ·

)T
Y1,−1 =

√
3

2
√
π
y p = 1

2
√
π

(
0 0 0

√
3 · · ·

)T
Y1,0 =

√
3

2
√
π
z p = 1

2
√
π

(
0 0
√

3 0 · · ·
)T

Y1,1 =
√
3

2
√
π
x p = 1

2
√
π

(
0
√

3 0 0 · · ·
)T

Y2,−2 = · · · p = · · ·

(B10)

From these we can construct A1. As an example, for spherical harmonics up to degree
lmax = 2, this is

A1 =
1

2
√
π


0

0

0

0

0

0

0

0

1

0

0

0

0

0

√
3

0

0

0

0

0

0

0

0

0

√
3

0

0

0

0

0

0

0

0

0

√
3

0

0

0

√
15

0

0

0

0

0

0

0

√
15

0

0

0

0

0

0

0

−3
√
5

2

0

0

0

−3
√
5

2

0

0

0

√
5

0

0

0

√
15

0

0

0

0

0

−
√
15
2

0

0

0

√
15
2

0

0

0

0


. L (B11)

We compute the change of basis matrix from polynomials to Green’s polynomials,
A2, in a similar manner. In practice, it is easier to express the elements of the Green’s
basis g̃ in terms of the elements of the polynomial basis p̃ and use those to populate
the columns of the matrix A2

−1. Continuing our example for lmax = 2, our second

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/A.ipynb
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change of basis matrix is

A2 =


0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1
2

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1
3

0

0

0

0

0

0

0

−1
3

0

0

0

0

0

0

0

1
2

0

0

0

0

0

0

0

1
3

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

. L (B12)

Finally, recall that the complete change of basis matrix from spherical harmonics
to Green’s polynomials, A, is just the matrix product of A2 and A1. For lmax = 2,
we have

A =
1

2
√
π


0

0

0

0

0

0

0

0

1

0

0

0

0

0

√
3

0

0

0

0

0

0

0

0

0

√
3

0

0

0

0

0

0

0

0

0

√
3
2

0

0

0

√
15
2

0

0

0

0

0

0

0

√
5
3

0

0

0

0

0

0

0

−3
√
5

2

0

0

0

−
√
5
2

0

0

0

√
5

0

0

0

−
√

5
3

0

0

0

0

0

−
√
15
2

0

0

0

√
5
3

2

0

0

0

0


. L (B13)

C. ROTATION OF SPHERICAL HARMONICS

C.1. Euler angles

Collado et al. (1989) derived expressions for the rotation matrices for the real
spherical harmonics of a given degree l from the corresponding complex rotation
matrices (Steinborn & Ruedenberg 1973):

Rl = U−1DlU (C14)

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/A.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/A.ipynb
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where

Dl
m,m′ = e−i(αm

′+γm)(−1)m
′+m
√

(l −m)!(l +m)!(l −m′)!(l +m′)!

×
∑
k

(−1)k
cos
(
β
2

)2l+m−m′−2k
sin
(
β
2

)−m+m′+2k

k!(l +m− k)!(l −m′ − k)!(m′ −m+ k)!
L (C15)

is the (m,m′) index of the rotation matrix for the complex spherical harmonics of
degree l and

U =
1√
2


. . .

. . .

i

i

−i

i

i

i
√

2

−1

1

1

1

−1

1

. . .

. . .


. L (C16)

describes the transformation from complex to real spherical harmonics. In Equa-
tion (C15) above, α, β, and γ are the (proper) Euler angles for rotation in the z−y−z
convention. To obtain a rotation matrix for an arbitrary vector y with spherical
harmonics of different orders up to l = lmax, we define the block-diagonal matrix R:

R =



R0

R1

R2

R3

. . .


. L (C17)

Rotation of y by the Euler angles α, β, and γ is performed via Equation (16) with R

given by Equation (C17).

C.2. Axis-angle

It is often more convenient to define a rotation by an axis u and an angle θ
of rotation about that axis. Given a unit vector u and an angle θ, we can find
the corresponding Euler angles by comparing the 3-dimensional Cartesian rotation

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/R.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/R.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/R.ipynb
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matrices for both systems,

P =


uzux (1− cθ)− uysθ

uyux (1− cθ) + uzsθ

cθ + u2x (1− cθ)

uzuy (1− cθ) + uxsθ

cθ + u2y (1− cθ)
uxuy (1− cθ)− uzsθ

cθ + u2z (1− cθ)
uyuz (1− cθ)− uxsθ

uxuz (1− cθ) + uysθ
 (C18)

for axis-angle rotations and

Q =


−cγsβ

cαsγ + cβcγsα

cαcβcγ − sαsγ

sβsγ

cαcγ − cβsαsγ

−cγsα − cαcβsγ

cβ

sαsβ

cαsβ
 , (C19)

for Euler rotations, where c· ≡ cos(·) and s· ≡ sin(·). Equating the two matrices gives
us expressions for the Euler angles in terms of u and θ:

cosα = P0,2√
P 2
0,2+P

2
1,2

cos β = P2,2 cos γ = − P2,0√
P 2
2,0+P

2
2,1

sinα = P1,2√
P 2
0,2+P

2
1,2

sin β =
√

1− P 2
2,2 sin γ = P2,1√

P 2
2,0+P

2
2,1

. L (C20)

Thus, given a spherical harmonic vector y, we can calculate how it transforms un-
der rotation by an angle θ about an axis u by first computing the Euler angles
(Equation C20) and using those to construct the spherical harmonic rotation matrix
(Equation C17).

D. COMPUTING THE SOLUTION VECTOR sn

Here we seek a solution to Equation (30), which gives the total flux during an
occultation of the nth term in the Green’s basis (Equation 11). The primitive integrals
P and G in that equation are given by Equations (31) and (32), with Gn defined in
Equation (34). Note that all of the terms in Equation (34), with the exception of
the l = 1,m = 0 case, are simple polynomials in x, y, and z, which facilitates their
integration. The l = 1,m = 0 term (corresponding to the n = 2 term in the Green’s
basis) is more difficult to integrate, but an analytic solution exists (Pál 2012). It is,
however, more convenient to note that this term corresponds to a surface map given
by the polynomial I(x, y) = g̃2(x, y) =

√
1− x2 − y2, which is the same function

used to model linear limb darkening in stars (Mandel & Agol 2002). We therefore
evaluate this term separately in Appendix D.1 below, followed by the general term in
Appendix D.2.

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/R.ipynb
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D.1. Linear limb darkening (n = 2, l = 1, m = 0)

From Mandel & Agol (2002), the total flux visible during the occultation of a body
whose surface map is given by I(x, y) =

√
1− x2 − y2 may be computed as

s2 =
2π

3

(
1− 3Λ

2
−Θ(r − b)

)
(D21)

where Θ(·) is the Heaviside step function and

Λ =



1

9π
√
br

[
(r + b)2 − 1

r + b

(
− 2r

(
2(r + b)2 + (r + b)(r − b)− 3

)
K(k2)

+ 3(b− r) Π
(
k2(b+ r)2, k2

))
− 4br(4− 7r2 − b2)E(k2)

]
k2 < 1

2

9π

[(
1− (r + b)2

)(√
1− (b− r)2K

(
1

k2

)
+ 3

(
b− r

(b+ r)
√

1− (b− r)2

)

×Π

(
1

k2(b+ r)2
,

1

k2

))
−
√

1− (b− r)2(4− 7r2 − b2)E

(
1

k2

)]
k2 ≥ 1

L (D22)

with

k2 =
1− r2 − b2 + 2br

4br
. (D23)

In the expressions above, K(·), E(·), and Π(·, ·) are the complete elliptic integrals of
the first, second kind, and third kind, respectively, defined as

K(k2) ≡
ˆ π

2

0

dϕ√
1− k2 sin2 ϕ

E(k2) ≡
ˆ π

2

0

√
1− k2 sin2 ϕ dϕ

Π(n, k2) ≡
ˆ π

2

0

dϕ

(1− n sin2 ϕ)
√

1− k2 sin2 ϕ
. (D24)

In some cases, the expressions above can become unstable. For r > 1, b ≈ r, b+ r ≈ 1,
and |b− r| ≈ 1, we re-parametrize these expressions in terms of the modified elliptic
integral cel(kc, p, a, b) (Bulirsch 1969) as described in Agol & Luger (2018).

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/biglam.ipynb
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D.2. All other terms
D.2.1. Setting up the equations

We evaluate all other terms in sn by integrating the primitive integrals of Gn.
These are given by

P(Gn) =



+

2π+φˆ

π−φ

(rcϕ)
µ+2
2 (b+ rsϕ)

ν
2 rcϕ dϕ

µ

2
even

−
2π+φˆ

π−φ

(rcϕ)l−2(1−r2−b2−2brsϕ)
3
2 rsϕ dϕ µ = 1, l even

−
2π+φˆ

π−φ

(rcϕ)l−3(b+ rsϕ)(1−r2−b2−2brsϕ)
3
2 rsϕ dϕ µ = 1, l 6= 1, l odd

+

2π+φˆ

π−φ

(rcϕ)
µ−3
2 (b+ rsϕ)

ν−1
2 (1−r2−b2−2brsϕ)

3
2 rcϕ dϕ

µ− 1

2
even, l 6= 1

— (c.f. Appendix D.1) µ = 1, l = 1

0 otherwise

(D25)

and

Q(Gn) =


+

2π+λˆ

π−λ

c
µ+2
2

ϕ s
ν
2
ϕcϕ dϕ

µ

2
even

0 otherwise,

(D26)

where we have used the fact that the line integral of any function proportional to z
taken along the limb of the occulted planet (where z =

√
1− x2 − y2 = 0) is zero.

D.2.2. The Q integral

We begin with the expression for Q (Equation D26), as this is the most straight-
forward. Defining the integral

Hu,v =

2π+λˆ

π−λ

cuϕs
v
ϕ dϕ , (D27)
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we may write

Q(Gn) =


Hµ+4

2
, ν
2

µ

2
even

0 otherwise .

(D28)

Pál (2012) derived simple recurrence relations for this integral:

Hu,v =



0 u odd

2λ+ π u = v = 0

−2 cosλ u = 0, v = 1

2

u+ v
(cosλ)u−1(sinλ)v+1 +

u− 1

u+ v
Hu−2,v u ≥ 2

− 2

u+ v
(cosλ)u+1(sinλ)v−1 +

v − 1

u+ v
Hu,v−2 v ≥ 2

L (D29)

D.2.3. The P integral

In general, the P integral is more difficult to evaluate because of the term to the 3/2

power in several of the cases. Moreover, the presence of terms proportional to powers
of b and r and terms of order unity in several of the integrands in Equation (D25)
can lead to severe numerical instabilities when either b or r are very large (which is
typically the case for secondary eclipses of small planets) or very small (which occurs
for small transiting bodies). To enforce numerical stability in all regimes, we find that
is convenient to define the parameters

δ =
b− r

2r
(D30)

and

κ = φ+
π

2

= cos−1
(
r2 + b2 − 1

2br

)
. (D31)

The latter variable can be defined more simply in terms of sin2 κ
2

= k2, or κ = 2 sin−1 k.
Note that when r + b ≤ 1, φ = π/2, so κ = π. With this transformed variable,
the limits of integration of P(Gn) become 3π

2
− κ to 3π

2
+ κ. Transforming ϕ to

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/Huvsol.ipynb
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ϕ′ = 1
2
(ϕ− 3π

2
) yields

P(Gn) =



2(2r)l+2

κ/2ˆ

−κ/2

(s2ϕ − s4ϕ)
µ+4
4 (δ + s2ϕ)

ν
2 dϕ

µ

2
even

F
κ/2ˆ

−κ/2

(s2ϕ − s4ϕ)
l−2
2 (k2 − s2ϕ)

3
2 (1− 2s2ϕ) dϕ µ = 1, l even

F
κ/2ˆ

−κ/2

(s2ϕ − s4ϕ)
l−3
2 (δ + s2ϕ)(k2 − s2ϕ)

3
2 (1− 2s2ϕ) dϕ µ = 1, l 6= 1, l odd

2F
κ/2ˆ

−κ/2

(s2ϕ − s4ϕ)
µ−1
4 (δ + s2ϕ)

ν−1
2 (k2 − s2ϕ)

3
2 dϕ

µ− 1

2
even, l 6= 1

— (c.f. Appendix D.1) µ = 1, l = 1

0 otherwise,

L (D32)

where F = (2r)l−1(4br)3/2 and we have subsequently dropped the prime from ϕ′ in
these integrals. Expanding the term (1− s2ϕ)u(δ + s2ϕ)v as a polynomial in s2ϕ, we find

(1− s2ϕ)u(δ + s2ϕ)v =
u+v∑
i=0

Ai,u,vs2iϕ , L (D33)

where

Ai,u,v =

min(u+v−i,u)∑
j=max(0,u−i)

(
u

j

)(
v

u+ v − i− j

)
(−1)u+jδu+v−i−j. L (D34)

The coefficients Ai,u,v are computed from Vieta’s formulae for the coefficients of a
polynomial in terms of sums and products of its roots, and are equal to the elementary
symmetric polynomials of the roots of (1− x)u(x+ δ)v. This expansion yields a sum
over terms which are integrals over powers of s2vϕ . We use this expansion to rewrite

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/PGn_reparam.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/vieta.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/vieta.ipynb
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the expressions for P(Gn) as

P(Gn) =



2(2r)l+2Kµ+4
4
, ν
2

µ

2
even

F
(
L(0)
l−2
2
,0
− 2L(1)

l−2
2
,0

)
µ = 1, l even

F
(
L(0)
l−3
2
,1
− 2L(1)

l−3
2
,1

)
µ = 1, l 6= 1, l odd

2FL(0)
µ−1
4
, ν−1

2

µ− 1

2
even, l 6= 1

— (c.f. Appendix D.1) µ = 1, l = 1

0 otherwise ,

L (D35)

where

Ku,v =

ˆ κ/2

κ/2

s2uϕ (1− s2ϕ)u(δ + s2ϕ)vdϕ

=
u+v∑
i=0

Ai,u,vIi+u , L (D36)

L(t)
u,v = k3

ˆ κ/2

−κ/2
s2(u+t)ϕ (1− s2ϕ)u(δ + s2ϕ)v

(
1− k−2s2ϕ

)3/2
dϕ,

= k3
u+v∑
i=0

Ai,u,vJi+u+t , L (D37)

and

Iv =

ˆ κ/2

−κ/2
s2vϕ dϕ , L (D38)

Jv =

ˆ κ/2

−κ/2
dϕs2vϕ

(
1− k−2s2ϕ

)3/2
, L (D39)

recalling that κ = 2 sin−1(k) for b+ r > 1 and κ = π for b+ r ≤ 1.
Given this formulation, evaluating P(Gn) is a matter of finding formulae for the

integrals Iv and Jv, which are in fact analytic. Using integration by reduction, Iv can
be expressed in terms of sums of powers of sin−1 k, k and kc ≡

√
1− k2, while Jv can

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/PGn_reparam2.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/PGn_reparam2.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/PGn_reparam2.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/PGn_reparam2.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/PGn_reparam2.ipynb
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be expressed as sums of complete elliptic integrals of k2 times polynomials in k2. The
solutions are different depending on whether k2 is less than or greater than unity.

D.2.4. Evaluating Iv and Jv for k2 < 1

In the k2 < 1 (b+ r > 1) limit, we make the substitution w = k−2 sin2 ϕ, giving

Iv = k1+2v

ˆ 1

0

(1− k2w)−
1
2w

2v−1
2 dw

=
2k1+2v

1 + 2v
2F1

(
1
2
, v + 1

2
; v + 3

2
; k2
)
, L (D40)

Jv = k1+2v

ˆ 1

0

(1− k2w)−
1
2w

2v−1
2 (1− w)3/2dw

= k1+2v 3π

4

(2v − 1)!!

2v(2 + v)!
2F1

(
1
2
, v + 1

2
; v + 3; k2

)
, L (D41)

where 2F1(a, b; c;x) is the generalized Hypergeometric function. These functions can
alternatively be expressed as series in k2 by expanding (1 − k2w)−1/2 as a series in
k2w, and then integrating each term over w, giving

Iv = 2k1+2v

∞∑
j=0

(2j − 1)!!

2jj!(2j + 2v + 1)
(k2)j,

Jv =
3π

4
k1+2v

∞∑
j=0

(2j − 1)!!(2j + 2v − 1)!!

22j+vj!(j + v + 2)!
(k2)j . L (D42)

For computational efficiency, both Iv and Jv can be evaluated recursively via either
upward or downward iteration. When iterating upward, we use the recursion relations

Iv =
1

v

(
2v − 1

2
Iv−1 − k2v−1kc

)
L (D43)

Jv =
1

2v + 3

[
2
(
v + (v − 1) k2 + 1

)
Jv−1 − k2(2v − 3)Jv−2

]
, L (D44)

along with the initial values

I0 = κ = 2 sin−1 k L (D45)

J0 =
2

3k3
[
2(2k2 − 1)E(k2) + (1− k2)(2− 3k2)K(k2)

]
J1 =

2

15k3
[
(−3k4 + 13k2 − 8)E(k2) + (1− k2)(8− 9k2)K(k2)

]
. L (D46)

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/IJHypergeo.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/IJHypergeo.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/IJSeries.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/IJupward.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/IJupward.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/IJupward.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/IJupward.ipynb
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When iterating downward, we can re-arrange Equation (D43) to obtain the relations

Iv =
2

2v + 1

[
(v + 1) Iv+1 + k2v+1kc

]
L (D47)

Jv =
1

(2v + 1)k2
[
2
(
3 + v + (1 + v) k2

)
Jv+1 − (2v + 7)Jv+2

]
. L (D48)

In this case, the starting values are obtained directly from Equation (D40) or Equa-
tion (D42).

Because the Hypergeometric function (Equation D40) can be costly to evaluate, it is
in general more computationally efficient to evaluate the expressions in Equation (D45)
and iterate upward. Moreover, note that the elliptic integrals E and K in those
expressions are exactly the same as those used to evaluate the linear limb darkening
(s2) term of the solution vector, so these need only be computed once to obtain
solutions for spherical harmonic maps of arbitrary order, which makes this algorithm
fast.

However, in practice, the upward recursion relations can sometimes be numerically
unstable due to cancellation of low-order terms, particularly when the occultor radius
is large (r � 1). To leading order in k, when k2 < 1 (b + r > 1), Iv ∝ k2v+1 and
Jv ∝ k2v+1. Consequently, when these equations are computed by recursion in v, the
lower powers of k cancel out, leading to round-off errors that grow as v gets large. In
practice, we find that when k2 > 1

2
, the upward recursion relations are numerically

stable, so we use Equation (D43) to evaluate the integrals. When k2 ≤ 1
2
, we instead

use Equations(D47) and (D48), and start by computing Ivmax , Jvmax , and Jvmax−1,
where vmax is the maximum value needed to compute Ku,v when l = lmax. We find
that the series in Equation (D42) converge rapidly, so we use those expressions to
evaluate the initial conditions.

D.2.5. Evaluating Iv and Jv for k2 ≥ 1

In the k2 ≥ 1 (b+ r ≤ 1) limit, the expression for Iv is simpler:

Iv = π
(2v − 1)!!

2vv!
, L (D49)

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/IJdownward.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/IJdownward.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/Ilargek.ipynb
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so Ku,v (Equation D36) is simply a polynomial in δ. For Jv, we make the substitution
w = sin2 ϕ to obtain

Jv =

ˆ 1

0

wv−
1
2 (1− k−2w)3/2(1− w)−1/2dw

=
√
πΓ(v + 1

2
)
(
2F̃1

(
−1

2
, v + 1

2
, v + 1, k−2

)
−
(

1

2
+ v

)
k−2 2F̃1

(
−1

2
, v + 3

2
, v + 2, k−2

))
,

= π
∞∑
j=0

(−1)j
(

3/2

j

)
(2j + 2v − 1)!!

2j+v(j + v)!
(k2)−j , L (D50)

where 2F̃1(a, b; c;x) is the regularized Hypergeometric function.
As in the k2 < 1 case, we can evaluate Jv via either upward (Equation D44) or

downward (Equation D48) recursion. For upward recursion, the initial values are
given by

J0 =
1

3

[
(8− 4k−2)E(k−2)− 2(1− k−2)K(k−2)

]
J1 =

1

15

[
(−6k2 + 26− 16k−2)E(k−2) + 2(1− k−2)(3k2 − 4)K(k−2)

]
. L (D51)

which, as before, make use of the same elliptic integrals as the s2 term. For downward
recursion, we evaluate Jvmax and Jvmax−1 from the series solution (Equation D50). In
practice, we find that our results are numerically stable if we perform upward recursion
for k2 < 2 and downward recursion if k2 ≥ 2.

https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/Jlargek.ipynb
https://github.com/rodluger/starry/blob/v0.2.2/docs/proofs/Jseries0largek.ipynb
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Table 1. Symbols used in this paper

Symbol Definition Reference

Alm Legendre function normalization Equation (A3)
A Change of basis matrix: Ylms to Green’s polynomials Equation (14)
A1 Change of basis matrix: Ylms to polynomials §2.3
A2 Change of basis matrix: polynomials to Green’s polynomials §2.3
Ai,u,v Vieta’s formula coefficient Equation (D34)
b Impact parameter in units of occulted body’s radius §3
Bjk
lm Spherical harmonic normalization Equation (A6)
c· cos(·)
Ckpq Expansion coefficient for z(x, y) Equation (A8)
Dl Rotation matrix for the complex spherical harmonics of degree l Equation (C15)
D∧ Exterior derivative Equation (29)
E(·) Complete elliptic integral of the second kind Equation (D24)
F Total flux seen by observer Equation (35)
F Function of b and r Equation (D35)
2F1 Generalized Hypergeometric function Equation (D40)
2F̃1 Regularized Hypergeometric function Equation (D50)
g̃ Green’s basis Equation (11)
g Vector in the basis g̃
Gn Anti-exterior derivative of the nth term in the Green’s basis Equation (34)
Hu,v Occultation integral Equation (D27)
i Dummy index
I Specific intensity, I(x, y) Equation (3)
Iv Occultation integral Equation (D36)
j Dummy index
Jv Occultation integral Equation (D36)
k Elliptic parameter Equation (D23)

Dummy index
kc

√
1− k2 Appendix D.2.3

K(·) Complete Elliptic integral of the first kind Equation (D24)
Ku,v Occultation integral Equation (D36)
l Spherical harmonic degree Equation (6)
L(t)u,v Occultation integral Equation (D36)
m Spherical harmonic order Equation (6)
n Surface map vector index, n = l2 + l +m Equation (5)
p Dummy index
P̄ Normalized associated Legendre function Equation (A2)
p̃ Polynomial basis Equation (7)
p Vector in the basis p̃
P Cartesian axis-angle rotation matrix Equation (C18)
P Primitive integral along perimiter of occultor Equation (31)
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Table 1 – continued from previous page

Symbol Definition Reference

q Dummy index
Q Cartesian Euler angle rotation matrix Equation (C19)
Q Primitive integral along perimiter of occulted body Equation (32)
r Occultor radius in units of occulted body’s radius §3
r Phase curve solution vector Equation (19)
R Rotation matrix for the real spherical harmonics Equation (C17)
Rl Rotation matrix for the real spherical harmonics of degree l Equation (C14)
s· sin(·)
s Occultation light curve solution vector Equation (19)
u Dummy index

u1, u2 Quadratic limb darkening coefficients Equation (37)
u Unit vector corresponding to the axis of rotation §C.2
U Complex to real spherical harmonics transform matrix Equation (C16)
v Dummy index
x Cartesian coordinate Equation (2)
y Cartesian coordinate Equation (2)
Yl,m Spherical harmonic of degree l and order m Equation (A1)
ỹ Spherical harmonic basis Equation (4)
y Vector in the basis ỹ
z Cartesian coordinate, z =

√
1− x2 − y2 Equation (2)

α Euler angle (ẑ rotation) Appendix C.1
β Euler angle (ŷ rotation) Appendix C.1
γ Euler angle (ẑ rotation) Appendix C.1
Γ Gamma function
δ Function of b and r Equation (D30)
θ Spherical harmonic polar angle Equation (1)
θ Rotation angle Appendix C.2
Θ Heaviside step function Equation (D22)
κ Angular position of occultor/occulted intersection point Equation (D31)
λ Angular position of occultor/occulted intersection point Equation (25)
Λ Mandel & Agol (2002) function Equation (D22)
µ l −m Equation (8)
µ Limb darkening radial parameter Equation (37)
ν l +m Equation (8)

Π(·, ·) Complete elliptic integral of the third kind Equation (D24)
φ Spherical harmonic azimuthal angle Equation (1)
φ Angular position of occultor/occulted intersection point Equation (24)
ϕ Dummy integration variable
ω Angular position of occultor Equation (23)


