200 research outputs found

    Influence of asperities on fluid and thermal flow in a fracture: a coupled Lattice Boltzmann study

    Full text link
    The characteristics of the hydro-thermal flow which occurs when a cold fluid is injected into a hot fractured bedrock depend on the morphology of the fracture. We consider a sharp triangular asperity, invariant in one direction, perturbing an otherwise flat fracture. We investigate its influence on the macroscopic hydraulic transmissivity and heat transfer efficiency, at fixed low Reynolds number. In this study, numerical simulations are done with a coupled lattice Boltzmann method that solves both the complete Navier-Stokes and advection-diffusion equations in three dimensions. The results are compared with those obtained under lubrication approximations which rely on many hypotheses and neglect the three-dimensional (3D) effects. The lubrication results are obtained by analytically solving the Stokes equation and a two-dimensional (integrated over the thickness) advection-diffusion equation. We use a lattice Boltzmann method with a double distribution (for mass and energy transport) on hypercubic and cubic lattices. Beyond some critical slope for the boundaries, the velocity profile is observed to be far from a quadratic profile in the vicinity of the sharp asperity: the fluid within the triangular asperity is quasi-static. We find that taking account of both the 3D effects and the cooling of the rock, are important for the thermal exchange. Neglecting these effects with lubrication approximations results in overestimating the heat exchange efficiency. The evolution of the temperature over time, towards steady state, also shows complex behavior: some sites alternately reheat and cool down several times, making it difficult to forecast the extracted heat.Comment: In Journal of Geophysical Research B (2013) online firs

    Lattice Boltzmann Models for Complex Fluids

    Full text link
    We present various Lattice Boltzmann Models which reproduce the effects of rough walls, shear thinning and granular flow. We examine the boundary layers generated by the roughness of the walls. Shear thinning produces plug flow with a sharp density contrast at the boundaries. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.Comment: 11 pages, plain TeX, preprint HLRZ 23/9

    Hyperballistic superdiffusion and explosive solutions to the non-linear diffusion equation

    Full text link
    By means of a particle model that includes interactions only via the local particle concentration, we show that hyperballistic diffusion may result. This is done by findng the exact solution of the corresponding non-linear diffusion equation, as well as by particle simulations. The connection between these levels of description is provided by the Fokker-Planck equation describing the particle dynamics.Comment: 5 pages, 5 figure

    The escape problem for active particles confined to a disc

    Full text link
    We study the escape problem for interacting, self-propelled particles confined to a disc, where particles can exit through one open slot on the circumference. Within a minimal 2D Vicsek model, we numerically study the statistics of escape events when the self-propelled particles can be in a flocking state. We show that while an exponential survival probability is characteristic for non-interaction self-propelled particles at all times, the interacting particles have an initial exponential phase crossing over to a sub-exponential late-time behavior. We propose a new phenomenological model based on non-stationary Poisson processes which includes the Allee effect to explain this sub-exponential trend and perform numerical simulations for various noise intensities

    Solute dispersion in channels with periodic square boundary roughness

    Get PDF

    Thermal modeling of the respiratory turbinates in arctic and subtropical seals

    Get PDF
    Mammals possess complex structures in their nasal cavities known as respiratory turbinate bones, which help the animal to conserve body heat and water during respiratory gas exchange. We considered the function of the maxilloturbinates of two species of seals, one arctic (Erignathus barbatus), one subtropical (Monachus monachus). By means of a thermo-hydrodynamic model that describes the heat and water exchange in the turbinate region we are able to reproduce the measured values of expired air temperatures in grey seals (Halichoerus grypus), a species for which experimental data are available. At the lowest environmental temperatures, however, this is only possible in the arctic seal, and only if we allow for the possibility of ice forming on the outermost turbinate region. At the same time the model predicts that for the arctic seals, the inhaled air is brought to deep body temperature and humidity conditions in passing the maxilloturbinates. The modeling shows that heat and water conservation go together in the sense that one effect implies the other, and that the conservation is most efficient and most flexible in the typical environment of both species. By controlling the blood flow through the turbinates the arctic seal is able to vary the heat and water conservation substantially at its average habitat temperatures, but not at temperatures around −40 °C. The subtropical species has simpler maxilloturbinates, and our model predicts that it is unable to bring inhaled air to deep body conditions, even in its natural environment, without some congestion of the vascular mucosa covering the maxilloturbinates. Physiological control of both blood flow rate and mucosal congestion is expected to have profound effects on the heat exchange function of the maxilloturbinates in seals

    Dynamic roughening and fluctuations of dipolar chains

    Get PDF
    Nonmagnetic particles in a carrier ferrofluid acquire an effective dipolar moment when placed in an external magnetic field. This fact leads them to form chains that will roughen due to Brownian motion when the magnetic field is decreased. We study this process through experiments, theory and simulations, three methods that agree on the scaling behavior over 5 orders of magnitude. The RMS width goes initially as t1/2t^{1/2}, then as t1/4t^{1/4} before it saturates. We show how these results complement existing results on polymer chains, and how the chain dynamics may be described by a recent non-Markovian formulation of anomalous diffusion.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Dynamical geometry for multiscale dissipative particle dynamics

    Full text link
    In this paper, we review the computational aspects of a multiscale dissipative particle dynamics model for complex fluid simulations based on the feature-rich geometry of the Voronoi tessellation. The geometrical features of the model are critical since the mesh is directly connected to the physics by the interpretation of the Voronoi volumes of the tessellation as coarse-grained fluid clusters. The Voronoi tessellation is maintained dynamically in time to model the fluid in the Lagrangian frame of reference, including imposition of periodic boundary conditions. Several algorithms to construct and maintain the periodic Voronoi tessellations are reviewed in two and three spatial dimensions and their parallel performance discussed. The insertion of polymers and colloidal particles in the fluctuating hydrodynamic solvent is described using surface boundaries.Comment: 28 pages, 8 figure
    corecore