4,682 research outputs found

    The improvement of zinc electrodes for electrochemical cells Quarterly report no. 2, Sep. 4 - Dec. 4, 1965

    Get PDF
    Growth parameters of mossy and crystalline dendrites applied to manufacture and handling of silver-zinc batterie

    Improved alkaline electrochemical cell

    Get PDF
    Addition of lead ions to electrolyte suppresses zinc dendrite formation during charging cycle. A soluble lead salt can be added directly or metallic lead can be incorporated in the zinc electrode and allowed to dissolve into the electrolyte

    The improvement of zinc electrodes for electrochemical cells Quarterly report no. 3, 5 Dec. 1965 - 4 Mar. 1966

    Get PDF
    Dendrite deposits on zinc electrodes of electrochemical cell and substrate effect

    Nonlinear Dynamics of Composite Fermions in Nanostructures

    Full text link
    We outline a theory describing the quasi-classical dynamics of composite fermions in the fractional quantum Hall regime in the potentials of arbitrary nanostructures. By an appropriate parametrization of time we show that their trajectories are independent of their mass and dispersion. This allows to study the dynamics in terms of an effective Hamiltonian although the actual dispersion is as yet unknown. The applicability of the theory is verified in the case of antidot arrays where it explains details of magnetoresistance measurements and thus confirms the existence of these quasiparticles.Comment: submitted to Europhys. Lett., 4 pages, postscrip

    Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    Get PDF
    We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from E13E\approx13 to 150 keV. For atoms we obtained absolute energy resolutions down to ΔE120\Delta E \approx 120 eV and relative energy resolutions down to ΔE/E103\Delta E/E\approx10^{-3}. We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56 u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and conclude that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest for mass spectrometric techniques, particularly for those desiring to make neutral-particle mass measurements

    Devil's Staircase in Magnetoresistance of a Periodic Array of Scatterers

    Full text link
    The nonlinear response to an external electric field is studied for classical non-interacting charged particles under the influence of a uniform magnetic field, a periodic potential, and an effective friction force. We find numerical and analytical evidence that the ratio of transversal to longitudinal resistance forms a Devil's staircase. The staircase is attributed to the dynamical phenomenon of mode-locking.Comment: two-column 4 pages, 5 figure

    Free particle scattering off two oscillating disks

    Full text link
    We investigate the two-dimensional classical dynamics of the scattering of point particles by two periodically oscillating disks. The dynamics exhibits regular and chaotic scattering properties, as a function of the initial conditions and parameter values of the system. The energy is not conserved since the particles can gain and loose energy from the collisions with the disks. We find that for incident particles whose velocity is on the order of the oscillating disk velocity, the energy of the exiting particles displays non-monotonic gaps of allowed energies, and the distribution of exiting particle velocities shows significant fluctuations in the low energy regime. We also considered the case when the initial velocity distribution is Gaussian, and found that for high energies the exit velocity distribution is Gaussian with the same mean and variance. When the initial particle velocities are in the irregular regime the exit velocity distribution is Gaussian but with a smaller mean and variance. The latter result can be understood as an example of stochastic cooling. In the intermediate regime the exit velocity distribution differs significantly from Gaussian. A comparison of the results presented in this paper to previous chaotic static scattering problems is also discussed.Comment: 9 doble sided pages 13 Postscript figures, REVTEX style. To appear in Phys. Rev.

    Magneto-Transport in the Two-Dimensional Lorentz Gas

    Full text link
    We consider the two-dimensional Lorentz gas with Poisson distributed hard disk scatterers and a constant magnetic field perpendicular to the plane of motion. The velocity autocorrelation is computed numerically over the full range of densities and magnetic fields with particular attention to the percolation threshold between hopping transport and pure edge currents. The Ohmic and Hall conductance are compared with mode-coupling theory and a recent generalized kinetic equation valid for low densities and small fields. We argue that the long time tail as t2t^{-2} persists for non-zero magnetic field.Comment: 7 pages, 14 figures. Uses RevTeX and epsfig.sty. Submitted to Physical Review

    Transport in two dimensional periodic magnetic fields

    Full text link
    Ballistic transport properties in a two dimensional electron gas are studied numerically, where magnetic fields are perpendicular to the plane of two dimensional electron systemsand periodically modulated both in xx and yy directions. We show that there are three types of trajectories of classical electron motions in this system; chaotic, pinned and runaway trajectories. It is found that the runaway trajectories can explain the peaks of magnetoresistance as a function of external magnetic fields, which is believed to be related to the commensurability effect between the classical cyclotron diameter and the period of magnetic modulation. The similarity with and difference from the results in the antidot lattice are discussed.Comment: 4 pages, 7 figures, to appear in J. Phys. Soc. Jpn., vol. 67 (1998) Novembe
    corecore