Ballistic transport properties in a two dimensional electron gas are studied
numerically, where magnetic fields are perpendicular to the plane of two
dimensional electron systemsand periodically modulated both in x and y
directions. We show that there are three types of trajectories of classical
electron motions in this system; chaotic, pinned and runaway trajectories. It
is found that the runaway trajectories can explain the peaks of
magnetoresistance as a function of external magnetic fields, which is believed
to be related to the commensurability effect between the classical cyclotron
diameter and the period of magnetic modulation. The similarity with and
difference from the results in the antidot lattice are discussed.Comment: 4 pages, 7 figures, to appear in J. Phys. Soc. Jpn., vol. 67 (1998)
Novembe