80 research outputs found

    Mud crab susceptibility to disease from white spot syndrome virus is species-dependent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on a report for one species (<it>Scylla serrata</it>), it is widely believed that mud crabs are relatively resistant to disease caused by white spot syndrome virus (WSSV). We tested this hypothesis by determining the degree of susceptibility in two species of mud crabs, <it>Scylla olivacea </it>and <it>Scylla paramamosain</it>, both of which were identified by mitochondrial 16 S ribosomal gene analysis. We compared single-dose and serial-dose WSSV challenges on <it>S. olivacea </it>and <it>S. paramamosain</it>.</p> <p>Findings</p> <p>In a preliminary test using <it>S. olivacea </it>alone, a dose of 1 × 10<sup>6 </sup>WSSV copies/g gave 100% mortality within 7 days. In a subsequent test, 17 <it>S. olivacea </it>and 13 <it>S. paramamosain </it>were divided into test and control groups for challenge with WSSV at 5 incremental, biweekly doses starting from 1 × 10<sup>4 </sup>and ending at 5 × 10<sup>6 </sup>copies/g. For 11 <it>S. olivacea </it>challenged, 3 specimens died at doses between 1 × 10<sup>5 </sup>and 5 × 10<sup>5 </sup>copies/g and none died for 2 weeks after the subsequent dose (1 × 10<sup>6 </sup>copies/g) that was lethal within 7 days in the preliminary test. However, after the final challenge on day 56 (5 × 10<sup>6 </sup>copies/g), the remaining 7 of 11 <it>S. olivacea </it>(63.64%) died within 2 weeks. There was no mortality in the buffer-injected control crabs. For 9 <it>S. paramamosain </it>challenged in the same way, 5 (55.56%) died after challenge doses between 1 × 10<sup>4 </sup>and 5 × 10<sup>5 </sup>copies/g, and none died for 2 weeks after the challenge dose of 1 × 10<sup>6 </sup>copies/g. After the final challenge (5 × 10<sup>6 </sup>copies/g) on day 56, no <it>S. paramamosain </it>died during 2 weeks after the challenge, and 2 of 9 WSSV-infected <it>S. paramamosain </it>(22.22%) remained alive together with the control crabs until the end of the test on day 106. Viral loads in these survivors were low when compared to those in the moribund crabs.</p> <p>Conclusions</p> <p><it>S. olivacea </it>and <it>S. paramamosain </it>show wide variation in response to challenge with WSSV. <it>S. olivacea </it>and <it>S. paramamosain </it>are susceptible to white spot disease, and <it>S. olivacea </it>is more susceptible than <it>S. paramamosain</it>. Based on our single-challenge and serial challenge results, and on previous published work showing that <it>S. serrata </it>is relatively unaffected by WSSV infection, we propose that susceptibility to white spot disease in the genus <it>Scylla </it>is species-dependent and may also be dose-history dependent. In practical terms for shrimp farmers, it means that <it>S. olivacea </it>and <it>S. paramamosain </it>may pose less threat as WSSV carriers than <it>S. serrata</it>. For crab farmers, our results suggest that rearing of <it>S. serrata </it>would be a better choice than <it>S. paramamosain </it>or <it>S. olivacea </it>in terms of avoiding losses from seasonal outbreaks of white spot disease.</p

    A nested PCR assay to avoid false positive detection of the microsporidian enterocytozoon hepatopenaei (EHP) in environmental samples in shrimp farms

    Get PDF
    PublishedJournal Article© 2016 Jaroenlak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers.OI acknowledges support from Agricultural Research Development Agency under project CRP5905020530 and Mahidol University. KS received funding from National Research Council Thailand, Division of Plan Administration and Research Budget/2557-79. PJ is supported by the Science Achievement Scholarship of Thailand (SAST). GDS acknowledges support of DG SANCO of the European Commission, and the UK Department of Environment, Food and Rural Affairs under project FB002. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    New Paradigms to Help Solve the Global Aquaculture Disease Crisis.

    Get PDF
    Published onlineJournal ArticleThis is the final version of the article. Available from Public Library of Science via the DOI in this record.n/aThe authors (GDS, KS) acknowledge funding administered by the British Council under the Newton Fund Researcher Links Programme, for a UK-Thailand bilateral workshop entitled "Scientific, technological and social solutions for sustainable aquaculture in Thailand: a key player in global aquatic food supply," Bangkok, March 2016. Further funding support is acknowledged from the European Commission (EC) and the UK Department for Environment, Food and Rural Affairs (Defra) under contracts C6928 and FB002 (to GDS and DB); from the Royal Society under a University Research Fellowship (to BAPW); and to the Agricultural Research Development Agency (ARDA) and National Research Council of Thailand (NRCT) (to KS, TWF, and OI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Inducible viral receptor, A possible concept to induce viral protection in primitive immune animals

    Get PDF
    A pseudolysogen (PL) is derived from the lysogenic Vibrio harveyi (VH) which is infected with the VHS1 (Vibrio harveyi Siphoviridae-like 1) bacteriophage. The lysogenic Vibrio harveyi undergoes an unequivalent division of the extra-chromosomal VHS1 phage genome and its VH host chromosome and produces a true lysogen (TL) and pseudolysogen (PL). The PL is tolerant to super-infection of VHS1, as is of the true lysogen (TL), but the PL does not contain the VHS1 phage genome while the TL does. However, the PL can become susceptible to VHS1 phage infection if the physiological state of the PL is changed. It is postulated that this is due to a phage receptor molecule which can be inducible to an on-and-off regulation influence by an alternating condition of the bacterial host cell. This characteristic of the PL leads to speculate that this phenomenon can also occur in high organisms with low immunity such as shrimp. This article proposes a hypothesis that the viral receptor molecule on the target cell can play a crucial role in which the invertebrate aquaculture animals can become tolerant to viral infection. A possible mechanism may be that the target cell disrupts the viral receptor molecule to prevent super infection. This concept can explain a mechanism for the prevention of viral infection in invertebrate animals which do not have acquired immunity in response to pathogens. It can guide us to develop a mechanism of immunity to viral infection in low-evolved-immune animals. Also, it can be an additional mechanism that exists in high immune organism, as in human for the prevention of viral infectio

    Taming of the shrewd: novel eukaryotic genes from RNA viruses

    Get PDF
    Genomes of several yeast species contain integrated DNA copies of complete genomes or individual genes of non-retroviral double-strand RNA viruses as reported in a recent BMC Biology article by Taylor and Bruenn. The integrated virus-specific sequences are at least partially expressed and seem to evolve under pressure of purifying selection, indicating that these are functional genes. Together with similar reports on integrated copies of some animal RNA viruses, these results suggest that integration of DNA copies of non-reverse-transcribing RNA viruses might be much more common than previously thought. The integrated copies could contribute to acquired immunity to the respective viruses
    corecore