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Disease as a Barrier to Production

Despite significant under-representation in the global debate surrounding food security [1, 2],

seafood (including fish, invertebrates, and algae) is the most highly traded of all food commod-

ities [3], playing a key role in nutritional and financial security, particularly in developing

economies [1]. The rising population (over 9 billion by 2050) and expanding middle income

sector pose critical challenges to global human health related to nutritional deficiency [4]. Fur-

thermore, a flat-lining capture fishery means aquaculture production must effectively double

over this period to satisfy demand [5]. Forty years after the Food and Agriculture Organization

of the United Nations (FAO) Technical Conference on Aquaculture [6], the implicit forecast

in the Kyoto Declaration has largely been fulfilled with global aquaculture growing to rival pro-

duction from the capture fishery [7]. The Bangkok Declaration, which followed recommended

key requirements for development beyond 2000, identified management of animal health by

cooperative action at national, regional, and inter-regional levels as “an urgent requirement

for sustaining growth” [8]. Whereas significant progress has been made in identification, diag-

nostics, treatment, and zone management of disease in certain sectors (e.g., the European

Atlantic salmon industry), recalcitrant issues (such as those associated with sea lice infestation)

can remain significant barriers to expansion [9]. In other sectors, infectious diseases caused by

viral, bacterial, and eukaryote pathogens continue to impose major yield-limiting effects on

production. Industry-wide losses to aquatic animal diseases exceed US$6 billion per annum

[10], rivaling in magnitude the projected proportional losses experienced in terrestrial live-

stock sector due to diseases such as foot-and-mouth disease [11]. In certain sectors (e.g.,

shrimp), infectious diseases are causing particularly devastating economic and social impacts,

with total losses exceeding 40% of global capacity [12]. Emergent diseases, often with cryptic

or syndromic aetiology (such as early mortality syndrome in shrimp), have collapsed produc-

tion in nations across Asia [13], confirming disease as the major constricting factor for expan-

sion of the aquaculture industry to 2050 [14]. Increasingly globalised trading of seafood

between net exporting and importing nations expands the geographical range over which

these effects are felt [7]. In this context, 50 early-career scientists from the United Kingdom

and Thailand met with industry professionals and policymakers in March 2016 to consider the
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future challenge of managing disease in global aquaculture and to discuss new paradigms for

mitigating their negative effects. This Opinion summarises major outcomes of those discus-

sions and proposes a need to refocus strategic scientific and policy priorities relating to aquatic

animal health in support of an expanding and sustainable industry to 2050.

Understanding Complex Systems

Aquatic environments impose a constant and omnipresent risk of pathogen exposure to resi-

dent hosts, perhaps even more so than terrestrial systems [15]. Poor knowledge of background

microbial diversity in farm systems leads to frequent emergence of previously unknown patho-

gens, surprising farmers and creating shock in the wider value chain [16,17,18]. Scientific

(pathology, systematics, diagnostics) and political (trade legislation, listing) responses to emer-

gence are largely reactive and often slow [19], facilitating local–global transfer of pathogens via

trading in live animals and products [20]. Historic focus on the development of case descrip-

tions and fulfilment of Koch’s postulates for specific (listed) pathogens have undoubtedly been

critical in notifying the wider community of emergent issues but arguably have politicised

(and popularised) research on specific facets of those pathogens. This has been at the cost of

investigating the very context (e.g., microbiomes, physicochemical conditions, host response)

in which they are allowed to manifest as yield-limiting disease. In addition, whilst cost–benefit

analyses have focussed on freedom from or eradication of the most politicised pathogens [21],

less effort has been placed on management of nonlisted “production diseases” that may

severely impact yields. This creates friction between industry operatives and the scientific evi-

dence base that is funded by national research monies to support that industry. Whilst striving

for disease freedom will remain a key aim in countries/systems where more stringent biosecu-

rity processes are already in place, the avoidance of disease outbreaks by management of pond

and animal microbiomes (rather than attempting to eliminate the presence of given patho-

gens) may provide a more viable means of mitigating losses in certain open systems in the

future [22]. High throughput sequencing (HTS) applied to open aquatic systems is rapidly

increasing our knowledge of prokaryotic and eukaryotic diversity and the complex symbiotic

arena in which they exist [23]. Application of so-called “environmental DNA” (eDNA)

approaches to aquaculture pond systems (e.g., in outbreak and non-outbreak scenarios) will

provide this much-needed context for conditions surrounding disease emergence by detecting

specific pathogens of consequence to farmed hosts or those elements of the microbiome that

facilitate their emergence as disease agents [24]. Improved definition of a “pathobiome” within

hosts may be expected to supersede an historic focus on specific pathogens as sole perpetrators

of yield-limiting disease [25]. A shift from single-pathogen to pathobiome concepts may also

expose a wider target to which pond management strategies can be applied [26]. While these

concepts are not necessarily new (the microbiology of diverse aquaculture systems has been

studied and manipulated extensively [27]), the application of modern HTS approaches will not

only accelerate our understanding of the complex trophic (e.g., prokaryotic, eukaryotic) struc-

tures that exists within such systems but also the effect of intervention on eventual health out-

comes for farmed animals living there [28]. Similar concepts are reported in other large agri-

systems (e.g., relating the microbiome to global pollinator health) [29] or, conversely, the con-

tribution of microbial consortia to disease suppression in soils [30]. Investigating the common

set of conditions that allow disease to emerge across diverse hosts and biomes clearly provides

a nexus for future research, allowing aquaculture to benefit from parallel advances in agricul-

ture, botany, zoology, and medical disciplines [31].
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Equipping the Host

The ability for farmed hosts to tolerate the pond environment is, of course, critical as well. Vac-

cination will retain a central role in the mitigation of known and emerging diseases in finfish

[32], with intelligent use of autogenous (“emergency”) vaccines showing high potential for

rapid deployment following detection of emergent diseases [33]. The scenario is different for

invertebrates, in which traditional vaccination is not possible. Here, solutions based around

better knowledge of the genome (of host and pathogen) are required. Despite multibillion-dol-

lar annual production metrics for aquatic livestock like tilapia and shrimp, until recently, a

lack of publicly available genomic data has hampered progress in understanding host–patho-

gen interaction, selective breeding, and development of therapeutics [34, 35]. Particularly for

shrimp, the problems associated with high-frequency genomic sequence repeats [34] may be

overcome by application of longer-read sequencing technologies alongside other shorter-read

technologies to allow for accurate assembly and characterisation. Open publication of such

data as a “public good” will fast track new therapeutics [36] and provide increased acceptance

of the importance of endogenous, viral-like elements in genetic immunity [37] (and, when

deemed socially acceptable, in the production of edited-genome lines of fish [38], molluscs

[39], and crustaceans [40]). Standardised approaches to pathogen (or pathobiome) sequencing

and open data access must coincide with these developments [36]. The basis for controlling

progression from infection to disease in farmed hosts will benefit from a better understanding

of fundamental mechanisms for pathogen tolerance in wild hosts where host background

genetic diversity is higher [41] and where exposure to pathogens may have left an inherited

legacy of natural resistance [42, 43]. In this way, hatchery supply of specific-pathogen-free

(SPF) larvae (produced with confirmed freedom from certain pathogens, though not necessar-

ily “tolerant” to the microbiome or pathobiome of the receiving farm) should be augmented

by provision of more diverse and broadly resilient lines, produced via well-managed selective

breeding programmes, and potentially augmented using emerging genetic technologies (such

as SNP arrays [44]). An ability to mitigate nonlisted production diseases [45] to deliver direct

benefit to farm yield and profit is essential [46].

Policy and People

To date, national and international research programmes relating to aquaculture health have

largely reflected a supranational focus on listed diseases, the occurrence of which can limit free

trading [19, 21]. While clearly important in averting global pandemics due to emerging dis-

ease, this strategy is insufficient to prevent the impact of nonlisted production diseases in limit-

ing yield from Low Income Food Deficit Countries (LIFDCs), where most of the current and

future aquaculture industry is based. In this context, mitigating production diseases has largely

been considered the responsibility of the industry itself. But times are changing. By setting

time-bound global production growth targets to 2050, which in turn feed national production

targets [5], there will be increasing need to focus on yield-limiting (rather than just trade-limit-

ing) diseases. Aligning academic, government, and industry research funding programs is

critically required. In doing so, defining basic research needs (e.g., on host and pathogen geno-

mics) must cater to tangible translation (e.g., to rapid diagnostics) and application (e.g., pond-

side testing by farmers or government). This faster translation to “point-of-need” bridges the

gap between farmer, scientist, and policymaker and defines the proportional investment

required in aquatic animal health for public good at the national and international levels [21].

Networking of national strategies (and reference laboratory systems) will not only align invest-

ment but help to address a relative global deficit in trained aquatic health professionals and

academics focussed on aquatic animal disease. Marginal improvements that reduce the global

PLOS Pathogens | DOI:10.1371/journal.ppat.1006160 February 2, 2017 3 / 6



burden of disease in aquaculture will convert to direct benefits for yield, profit, poverty allevia-

tion, and food security for producer nations [14]. More significant interventions, including

those which capitalise on automated detection of pathogens and other remote sensing applica-

tions [47], have significant potential for mitigating the most important yield-limiting produc-

tion diseases and will improve the insurability of the global aquaculture sector, promoting

inward investment and assuring production targets to 2050 are met in a sustainable manner

[7].
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1. Béné C, Barange M, Subasinghe R, Pinstrup-Andersen P, Merino G, Hemre GI, Williams M. Feeding 9

billion by 2050 –Putting fish back on the menu. Food Sec. 2015;

2. Allison EH, Delaporte A, Hellebrandt de Silva D. Integrating fisheries management and aquaculture

development with food security and livelihoods for the poor. Report submitted to the Rockefeller Foun-

dation. Norwich: School of International Development, University of East Anglia. 2013.

3. FAO. Food and Agriculture Organization of the UN (FAO) (2012) The State of the World Fisheries and

Aquaculture. 2012. FAO, Rome, Italy.

4. Golden CD, Allison EH, Cheung WWL, Dey MM, Halpern BS, McCauley DJ, Smith M, Vaitla B, Zeller D,

Myers SS. Fall in fish catch threatens human health. Nature. 2016; 534: 317–320. doi: 10.1038/

534317a PMID: 27306172

5. Waite R, Beveridge M, Brummett R, Castine S, Chaiyawannakarn N, Kaushik S, Mungkung R, Nawa-

pakpilai S, Phillips M. Improving Productivity and Environmental Performance of Aquaculture. Working

Paper, Instalment 5 of Creating a Sustainable Food Future. Washington, DC: World Resources Insti-

tute. 2015. http://www.worldresourcesreport.org

6. FAO. Report on the FAO Technical Conference on Aquaculture, Kyoto, Japan, 26 May– 2 June 1976.

FAO Fish. Rep. 1976; 188: 93p.

7. Jennings S, Leocadio AM, Jeffrey KR, Metcalfe JD, Katsiadaki I, Auchterlonie NA, Mangi SC, Pinnegar

JK, Ellis T, Peeler EJ, Luisetti T, Baker-Austin C, Brown M, Catchpole TL, Clyne FJ, Dye SR, Edmonds

NJ, Hyder K, Lee J, Lees DN, Morgan OC, O’Brien CM, Oidtmann B, Posen PE, Ribeiro Santos A, Tay-

lor NGH, Turner AD, Townhill BL, Verner-Jeffreys DW, Stentiford GD. Aquatic food security: trends,

challenges and solutions for a single nation embedded in a dynamic global web of producers, proces-

sors and markets. Fish Fisher. 2016;

8. FAO. Aquaculture Development Beyond 2000; the Bangkok Declaration and Strategy. Conference on

Aquaculture in the Third Millennium, 20–25 February 2000. Bangkok. Thailand. NACA. Bangkok and

FAO. Rome. 2000; 27p.

9. Rogers LA, Bateman AW, Connors BM Frazer LN, Godwin SC, Krkošek M, Lewis MA, Peacock SJ,
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