443 research outputs found

    Influence of long-range correlated surface and near the surface disorder on the process of adsorption of long-flexible polymer chains

    Full text link
    The influence of long-range correlated surface and decaying near surface disorder with quenched defects is studied. We consider a correlation function for the defects of the form e−z/Οra\frac{e^{-z/\xi}}{r^{a}}, where a<d−1a<d-1 and zz being the coordinate in the direction perpendicular to the surface and rr denotes the distance parallel to the surface. We investigate the process of adsorption of long-flexible polymer chains with excluded volume interactions on a "marginal" and attractive wall in the framework of renormalization group field theoretical approach up to first order of perturbation theory in a double (Ï”\epsilon,ÎŽ\delta)- expansion (Ï”=4−d\epsilon=4-d, ÎŽ=3−a\delta=3-a) for the semi-infinite âˆŁÏ•âˆŁ4|\phi|^4 O(m,n)O(m,n) model with the above mentioned type of surface and near the surface disorder in the limit m,n→0m,n\to 0. In particular we study two limiting cases. First, we investigate the scenario where the chain's extension it much larger then Ο\xi. Second, we consider the case where the chain's extension is of the order of Ο\xi. For both cases we obtained series for bulk and the whole set of surface critical exponents, characterizing the process of adsorption of long-flexible polymer chains at the surface. The polymer linear dimensions parallel and perpendicular to the surface and the corresponding partition functions as well as the behavior of monomer density profiles and the fraction of adsorbed monomers at the surface and in the volume are studied.Comment: 31 pages, 5 figures, 2 table

    Adsorption of Multi-block and Random Copolymer on a Solid Surface: Critical Behavior and Phase Diagram

    Full text link
    The adsorption of a single multi-block ABAB-copolymer on a solid planar substrate is investigated by means of computer simulations and scaling analysis. It is shown that the problem can be mapped onto an effective homopolymer adsorption problem. In particular we discuss how the critical adsorption energy and the fraction of adsorbed monomers depend on the block length MM of sticking monomers AA, and on the total length NN of the polymer chains. Also the adsorption of the random copolymers is considered and found to be well described within the framework of the annealed approximation. For a better test of our theoretical prediction, two different Monte Carlo (MC) simulation methods were employed: a) off-lattice dynamic bead-spring model, based on the standard Metropolis algorithm (MA), and b) coarse-grained lattice model using the Pruned-enriched Rosenbluth method (PERM) which enables tests for very long chains. The findings of both methods are fully consistent and in good agreement with theoretical predictions.Comment: 27 pages, 12 figure

    Hydration interactions: aqueous solvent effects in electric double layers

    Full text link
    A model for ionic solutions with an attractive short-range pair interaction between the ions is presented. The short-range interaction is accounted for by adding a quadratic non-local term to the Poisson-Boltzmann free energy. The model is used to study solvent effects in a planar electric double layer. The counter-ion density is found to increase near the charged surface, as compared with the Poisson-Boltzmann theory, and to decrease at larger distances. The ion density profile is studied analytically in the case where the ion distribution near the plate is dominated only by counter-ions. Further away from the plate the density distribution can be described using a Poisson-Boltzmann theory with an effective surface charge that is smaller than the actual one.Comment: 11 Figures in 13 files + LaTex file. 20 pages. Accepted to Phys. Rev. E. Corrected typos and reference

    Adsorption transition of a self-avoiding polymer chain onto a rigid rod

    Full text link
    The subject of this work is the adsorption transition of a long flexible self-avoiding polymer chain onto a rigid thin rod. The rod is represented by a cylinder of radius R with a short-ranged attractive surface potential for the chain monomers. General scaling results are obtained by using renormalization group arguments in conjunction with available results for quantum field theories with curved boundaries [McAvity and Osborn 1993 Nucl. Phys. B 394, 728]. Relevant critical exponents are identified and estimated using geometric arguments.Comment: 19 pages, 4 figures. To appear in: J. Phys.: Condens. Matter, special issue dedicated to Lothar Schaefer on the occasion of his 60th birthda

    First-order phase transition during displacement of amphiphilic biomacromolecules from interfaces by surfactant molecules

    Get PDF
    The adsorption of surfactants onto a hydrophobic interface, already laden with a fixed number of amphiphilic macromolecules, is studied using the self consistent field calculation method of Scheutjens and Fleer. For biopolymers having unfavourable interactions with the surfactant molecules, the adsorption isotherms show an abrupt jump at a certain value of surfactant bulk concentration. Alternatively, the same behaviour is exhibited when the number of amphiphilic chains on the interface is decreased. We show that this sudden jump is associated with a first-order phase transition, by calculating the free energy values for the stable and the metastable states at both sides of the transition point. We also observe that the transition can occur for two approaching surfaces, from a high surfactant coverage phase to a low surfactant coverage one, at sufficiently close separation distances. The consequence of this finding for the steric colloidal interactions, induced by the overlap of two biopolymer + surfactant films, is explored. In particular, a significantly different interaction, in terms of its magnitude and range, is predicted for these two phases. We also consider the relevance of the current study to problems involving the competitive displacement of proteins by surfactants in food colloid systems

    Polymer depletion interaction between two parallel repulsive walls

    Get PDF
    The depletion interaction between two parallel repulsive walls confining a dilute solution of long and flexible polymer chains is studied by field-theoretic methods. Special attention is paid to self-avoidance between chain monomers relevant for polymers in a good solvent. Our direct approach avoids the mapping of the actual polymer chains on effective hard or soft spheres. We compare our results with recent Monte Carlo simulations [A. Milchev and K. Binder, Eur. Phys. J. B 3, 477 (1998)] and with experimental results for the depletion interaction between a spherical colloidal particle and a planar wall in a dilute solution of nonionic polymers [D. Rudhardt, C. Bechinger, and P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)].Comment: 17 pages, 3 figures. Final version as publishe

    Influence of Nanoparticle Size and Shape on Oligomer Formation of an Amyloidogenic Peptide

    Full text link
    Understanding the influence of macromolecular crowding and nanoparticles on the formation of in-register ÎČ\beta-sheets, the primary structural component of amyloid fibrils, is a first step towards describing \emph{in vivo} protein aggregation and interactions between synthetic materials and proteins. Using all atom molecular simulations in implicit solvent we illustrate the effects of nanoparticle size, shape, and volume fraction on oligomer formation of an amyloidogenic peptide from the transthyretin protein. Surprisingly, we find that inert spherical crowding particles destabilize in-register ÎČ\beta-sheets formed by dimers while stabilizing ÎČ\beta-sheets comprised of trimers and tetramers. As the radius of the nanoparticle increases crowding effects decrease, implying smaller crowding particles have the largest influence on the earliest amyloid species. We explain these results using a theory based on the depletion effect. Finally, we show that spherocylindrical crowders destabilize the ordered ÎČ\beta-sheet dimer to a greater extent than spherical crowders, which underscores the influence of nanoparticle shape on protein aggregation

    Developing an intervention to facilitate family communication about inherited genetic conditions, and training genetic counsellors in its delivery.

    Get PDF
    Many families experience difficulty in talking about an inherited genetic condition that affects one or more of them. There have now been a number of studies identifying the issues in detail, however few have developed interventions to assist families. The SPRinG collaborative have used the UK Medical Research Council's guidance on Developing and Evaluating Complex Interventions, to work with families and genetic counsellors (GCs) to co-design a psycho-educational intervention to facilitate family communication and promote better coping and adaptation to living with an inherited genetic condition for parents and their children (<18 years). The intervention is modelled on multi-family discussion groups (MFDGs) used in psychiatric settings. The MFDG was developed and tested over three phases. First focus groups with parents, young people, children and health professionals discussed whether MFDG was acceptable and proposed a suitable design. Using evidence and focus group data, the intervention and a training manual were developed and three GCs were trained in its delivery. Finally, a prototype MFDG was led by a family therapist and co-facilitated by the three GCs. Data analysis showed that families attending the focus groups and intervention thought MFDG highly beneficial, and the pilot sessions had a significant impact on their family' functioning. We also demonstrated that it is possible to train GCs to deliver the MFDG intervention. Further studies are now required to test the feasibility of undertaking a definitive randomised controlled trial to evaluate its effectiveness in improving family outcomes before implementing into genetic counselling practice.The National Institute of Health Research funded the study but any views expressed do not necessarily reflect those of the Authority. Funded by NIHR reference number: RP-DG-1211-10015

    Parental cultural models and resources for understanding mathematical achievement in culturally diverse school settings

    Get PDF
    This paper proposes that the theoretical concept of cultural models can offer useful insights into parental involvement in their child’s mathematical achievement and the resources they use to go about gaining information in culturally diverse learning settings. This examination takes place within a cultural-developmental framework and draws on the notion of cultural models to explicate parental understandings of their child’s mathematics achievement and what resources are used to make sense of this. Three parental resources are scrutinized: (a) the teacher, (b) examination test results, and (c) constructions of child development. The interviews with 22 parents revealed some ambiguity around the interpretation of these resources by the parent, which was often the result of incongruent cultural models held between the home and the school. The resources mentioned are often perceived as being unambiguous but show themselves instead to be highly interpretive because of the diversity of cultural models in existence in culturally diverse settings. Parents who are in minority or marginalized positions tend to have difficulties in interpreting cultural models held by school, thereby disempowering them to be parentally involved in the way the school would like
    • 

    corecore