6,239 research outputs found

    Channeling 5-min photospheric oscillations into the solar outer atmosphere through small-scale vertical magnetic flux tubes

    Full text link
    We report two-dimensional MHD simulations which demonstrate that photospheric 5-min oscillations can leak into the chromosphere inside small-scale vertical magnetic flux tubes. The results of our numerical experiments are compatible with those inferred from simultaneous spectropolarimetric observations of the photosphere and chromosphere obtained with the Tenerife Infrared Polarimeter (TIP) at 10830 A. We conclude that the efficiency of energy exchange by radiation in the solar photosphere can lead to a significant reduction of the cut-off frequency and may allow for the propagation of the 5 minutes waves vertically into the chromosphere.Comment: accepted by ApJ

    One-dimensional metallic behavior of the stripe phase in La2x_{2-x}Srx_xCuO4_4

    Full text link
    Using an exact diagonalization method within the dynamical mean-field theory we study stripe phases in the two-dimensional Hubbard model. We find a crossover at doping δ0.05\delta\simeq 0.05 from diagonal stripes to vertical site-centered stripes with populated domain walls, stable in a broad range of doping, 0.05<δ<0.170.05<\delta<0.17. The calculated chemical potential shift δ2\propto -\delta^2 and the doping dependence of the magnetic incommensurability are in quantitative agreement with the experimental results for doped La2x_{2-x}Srx_xCuO4_4. The electronic structure shows one-dimensional metallic behavior along the domain walls, and explains the suppression of spectral weight along the Brillouin zone diagonal.Comment: 4 pages, 4 figure

    Acoustic-gravity wave propagation characteristics in 3D radiation hydrodynamic simulations of the solar atmosphere

    Full text link
    There has been tremendous progress in the degree of realism of three-dimensional radiation magneto-hydrodynamic simulations of the solar atmosphere in the past decades. Four of the most frequently used numerical codes are Bifrost, CO5BOLD, MANCHA3D, and MURaM. Here we test and compare the wave propagation characteristics in model runs from these four codes by measuring the dispersion relation of acoustic-gravity waves at various heights. We find considerable differences between the various models. The height dependence of wave power, in particular of high-frequency waves, varies by up to two orders of magnitude between the models, and the phase difference spectra of several models show unexpected features, including ±180\pm180^\circ phase jumps.Comment: 19 pages, 15 figure

    Vortex, skyrmion and elliptical domain wall textures in the two-dimensional Hubbard model

    Full text link
    The spin and charge texture around doped holes in the two-dimensional Hubbard model is calculated within an unrestricted spin rotational invariant slave-boson approach. In the first part we examine in detail the spin structure around two holes doped in the half-filled system where we have studied cluster sizes up to 10 x 10. It turns out that the most stable configuration corresponds to a vortex-antivortex pair which has lower energy than the Neel-type bipolaron even when one takes the far field contribution into account. We also obtain skyrmions as local minima of the energy functional but with higher total energy than the vortex solutions. Additionally we have investigated the stability of elliptical domain walls for commensurate hole concentrations. We find that (i) these phases correspond to local minima of the energy functional only in case of partially filled walls, (ii) elliptical domain walls are only stable in the low doping regime.Comment: 7 pages, 6 figures, accepted for Phys. Rev.

    Quantum Dot Potentials: Symanzik Scaling, Resurgent Expansions and Quantum Dynamics

    Get PDF
    This article is concerned with a special class of the ``double-well-like'' potentials that occur naturally in the analysis of finite quantum systems. Special attention is paid, in particular, to the so-called Fokker-Planck potential, which has a particular property: the perturbation series for the ground-state energy vanishes to all orders in the coupling parameter, but the actual ground-state energy is positive and dominated by instanton configurations of the form exp(-a/g), where a is the instanton action. The instanton effects are most naturally taken into account within the modified Bohr-Sommerfeld quantization conditions whose expansion leads to the generalized perturbative expansions (so-called resurgent expansions) for the energy values of the Fokker-Planck potential. Until now, these resurgent expansions have been mainly applied for small values of coupling parameter g, while much less attention has been paid to the strong-coupling regime. In this contribution, we compare the energy values, obtained by directly resumming generalized Bohr-Sommerfeld quantization conditions, to the strong-coupling expansion, for which we determine the first few expansion coefficients in powers of g^(-2/3). Detailed calculations are performed for a wide range of coupling parameters g and indicate a considerable overlap between the regions of validity of the weak-coupling resurgent series and of the strong-coupling expansion. Apart from the analysis of the energy spectrum of the Fokker-Planck Hamiltonian, we also briefly discuss the computation of its eigenfunctions. These eigenfunctions may be utilized for the numerical integration of the (single-particle) time-dependent Schroedinger equation and, hence, for studying the dynamical evolution of the wavepackets in the double-well-like potentials.Comment: 13 pages; RevTe

    Extended Gaussian wave packet dynamics

    Get PDF
    We examine an extension to the theory of Gaussian wave packet dynamics in a one-dimensional potential by means of a sequence of time dependent displacement and squeezing transformations. Exact expressions for the quantum dynamics are found, and relationships are explored between the squeezed system, Gaussian wave packet dynamics, the time dependent harmonic oscillator, and wave packet dynamics in a Gauss-Hermite basis. Expressions are given for the matrix elements of the potential in some simple cases. Several examples are given, including the propagation of a non-Gaussian initial state in a Morse potential

    Space power distribution system technology. Volume 2: Autonomous power management

    Get PDF
    Electrical power subsystem requirements, power management system functional requirements, algorithms, power management subsystem, hardware development, and trade studies and analyses are discussed
    corecore