353 research outputs found
Effective String Theory Revisited
We revisit the effective field theory of long relativistic strings such as
confining flux tubes in QCD. We derive the Polchinski-Strominger interaction by
a calculation in static gauge. This interaction implies that a non-critical
string which initially oscillates in one direction gets excited in orthogonal
directions as well. In static gauge no additional term in the effective action
is needed to obtain this effect. It results from a one-loop calculation using
the Nambu-Goto action. Non-linearly realized Lorentz symmetry is manifest at
all stages in dimensional regularization. We also explain that independent of
the number of dimensions non-covariant counterterms have to be added to the
action in the commonly used zeta-function regularization.Comment: 21 pages, 4 figures, v2: typo corrected, references added, published
versio
Flux compactification on smooth, compact three-dimensional toric varieties
Three-dimensional smooth, compact toric varieties (SCTV), when viewed as real
six-dimensional manifolds, can admit G-structures rendering them suitable for
internal manifolds in supersymmetric flux compactifications. We develop
techniques which allow us to systematically construct G-structures on SCTV and
read off their torsion classes. We illustrate our methods with explicit
examples, one of which consists of an infinite class of toric CP^1 bundles. We
give a self-contained review of the relevant concepts from toric geometry, in
particular the subject of the classification of SCTV in dimensions less or
equal to 3. Our results open up the possibility for a systematic construction
and study of supersymmetric flux vacua based on SCTV.Comment: 27 pages, 10 figures; v2: references, minor typos & improvement
Factorization Breaking in Dijet Photoproduction with a Leading Neutron
The production of dijets with a leading neutron in ep-interactions at HERA is
calculated in leading order and next-to-leading order of perturbative QCD using
a pion-exchange model. Differential cross sections for deep-inelastic
scattering (DIS) and photoproduction are presented as a function of several
kinematic variables. By comparing the theoretical predictions for DIS dijets to
recent H1 data, the pion flux factor together with the parton distribution
functions of the pion is determined. The dijet cross sections in
photoproduction show factorization breaking if compared to the H1
photoproduction data. The suppression factor is S = 0.48 (0.64) for resolved
(global) suppression.Comment: 16 pages, 5 figure
LHC as and Collider
We propose an experiment at the LHC with leading neutron production.The
latter can be used to extract from it the total cross-sections. With
two leading neutrons we can get access to the total
cross-sections. In this note we give some estimates and discuss related
problems and prospects.Comment: 22 pages, 18 figures, 8 tables, to be publishe
Universal de Sitter solutions at tree-level
Type IIA string theory compactified on SU(3)-structure manifolds with
orientifolds allows for classical de Sitter solutions in four dimensions. In
this paper we investigate these solutions from a ten-dimensional point of view.
In particular, we demonstrate that there exists an attractive class of de
Sitter solutions, whose geometry, fluxes and source terms can be entirely
written in terms of the universal forms that are defined on all SU(3)-structure
manifolds. These are the forms J and Omega, defining the SU(3)-structure
itself, and the torsion classes. The existence of such universal de Sitter
solutions is governed by easy-to-verify conditions on the SU(3)-structure,
rendering the problem of finding dS solutions purely geometrical. We point out
that the known (unstable) solution coming from the compactification on SU(2)x
SU(2) is of this kind.Comment: 20 pages, 3 figures, v2: added reference
Galaxy Bias and non-Linear Structure Formation in General Relativity
Length scales probed by large scale structure surveys are becoming closer to
the horizon scale. Further, it has been recently understood that
non-Gaussianity in the initial conditions could show up in a scale dependence
of the bias of galaxies at the largest distances. It is therefore important to
include General Relativistic effects. Here we provide a General Relativistic
generalization of the bias, valid both for Gaussian and non-Gaussian initial
conditions. The collapse of objects happens on very small scales, while
long-wavelength modes are always in the quasi linear regime. Around every
collapsing region, it is therefore possible to find a reference frame that is
valid for all times and where the space time is almost flat: the Fermi frame.
Here the Newtonian approximation is applicable and the equations of motion are
the ones of the N-body codes. The effects of long-wavelength modes are encoded
in the mapping from the cosmological frame to the local frame. For the linear
bias, the effect of the long-wavelength modes on the dynamics is encoded in the
local curvature of the Universe, which allows us to define a General
Relativistic generalization of the bias in the standard Newtonian setting. We
show that the bias due to this effect goes to zero as the squared ratio of the
physical wavenumber with the Hubble scale for modes longer than the horizon, as
modes longer than the horizon have no dynamical effects. However, the bias due
to non-Gaussianities does not need to vanish for modes longer than the Hubble
scale, and for non-Gaussianities of the local kind it goes to a constant. As a
further application, we show that it is not necessary to perform large N-body
simulations to extract information on long-wavelength modes: N-body simulations
can be done on small scales and long-wavelength modes are encoded simply by
adding curvature to the simulation and rescaling the coordinates.Comment: 48 pages, 4 figures; v2: added references, JCAP published versio
Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories
The interplay rich between algebraic geometry and string and gauge theories
has recently been immensely aided by advances in computational algebra.
However, these symbolic (Gr\"{o}bner) methods are severely limited by
algorithmic issues such as exponential space complexity and being highly
sequential. In this paper, we introduce a novel paradigm of numerical algebraic
geometry which in a plethora of situations overcomes these short-comings. Its
so-called 'embarrassing parallelizability' allows us to solve many problems and
extract physical information which elude the symbolic methods. We describe the
method and then use it to solve various problems arising from physics which
could not be otherwise solved.Comment: 36 page
Doping the holographic Mott insulator
Mott insulators form because of strong electron repulsions, being at the
heart of strongly correlated electron physics. Conventionally these are
understood as classical "traffic jams" of electrons described by a short-ranged
entangled product ground state. Exploiting the holographic duality, which maps
the physics of densely entangled matter onto gravitational black hole physics,
we show how Mott-insulators can be constructed departing from entangled
non-Fermi liquid metallic states, such as the strange metals found in cuprate
superconductors. These "entangled Mott insulators" have traits in common with
the "classical" Mott insulators, such as the formation of Mott gap in the
optical conductivity, super-exchange-like interactions, and form "stripes" when
doped. They also exhibit new properties: the ordering wave vectors are detached
from the number of electrons in the unit cell, and the DC resistivity diverges
algebraically instead of exponentially as function of temperature. These
results may shed light on the mysterious ordering phenomena observed in
underdoped cuprates.Comment: 27 pages, 9 figures. Accepted in Nature Physic
CMB-S4 Science Book, First Edition
This book lays out the scientific goals to be addressed by the
next-generation ground-based cosmic microwave background experiment, CMB-S4,
envisioned to consist of dedicated telescopes at the South Pole, the high
Chilean Atacama plateau and possibly a northern hemisphere site, all equipped
with new superconducting cameras. CMB-S4 will dramatically advance cosmological
studies by crossing critical thresholds in the search for the B-mode
polarization signature of primordial gravitational waves, in the determination
of the number and masses of the neutrinos, in the search for evidence of new
light relics, in constraining the nature of dark energy, and in testing general
relativity on large scales
The Origin of the Universe as Revealed Through the Polarization of the Cosmic Microwave Background
Modern cosmology has sharpened questions posed for millennia about the origin
of our cosmic habitat. The age-old questions have been transformed into two
pressing issues primed for attack in the coming decade: How did the Universe
begin? and What physical laws govern the Universe at the highest energies? The
clearest window onto these questions is the pattern of polarization in the
Cosmic Microwave Background (CMB), which is uniquely sensitive to primordial
gravity waves. A detection of the special pattern produced by gravity waves
would be not only an unprecedented discovery, but also a direct probe of
physics at the earliest observable instants of our Universe. Experiments which
map CMB polarization over the coming decade will lead us on our first steps
towards answering these age-old questions.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey.
Full list of 212 author available at http://cmbpol.uchicago.ed
- …