327 research outputs found

    Mechanical properties of magnetostrictive iron-gallium alloys

    Get PDF
    Single crystal specimens of Fe-17 at. % Ga were tested in tension at room temperature. Specimens with a tensile axis orientation of [110] displayed slip lines on the specimen faces corresponding to slip on the {110}with a critical resolved shear stress of 220 MPa. Yielding began at 0.3% elongation and 450 MPa. An ultimate tensile strength of 580 MPa was observed with no fracture occurring through 1.6% elongation. The Young s modulus was 160 GPa in the loading direction with a Poisson s ratio of -0.37 on the (100) major face. A specimen with a tensile axis orientation of [100] showed slip lines corresponding to slip on the {211}with critical resolved shear stress of 240 MPa. Discontinuous yielding began at 0.8% elongation, which was thought to result from twinning, kink band formation, or stress-induced transformation. The Young\u27s modulus was 65 GPa in the loading direction with a Poisson s ratio of 0.45 on the (001) major face. A maximum tensile strength of 515 MPa was observed with fracture occurring after 2% elongation. A sizeable elastic anisotropy of 19.9 was identified for Fe-27.2 at. % Ga accompanied by a Poisson\u27s ratio of -0.75 to produce a large in-plane auxetic behavior

    Ocean temperature and salinity components of the Madden-Julian oscillation observed by Argo floats

    Get PDF
    New diagnostics of the Madden-Julian Oscillation (MJO) cycle in ocean temperature and, for the first time, salinity are presented. The MJO composites are based on 4 years of gridded Argo float data from 2003 to 2006, and extend from the surface to 1,400 m depth in the tropical Indian and Pacific Oceans. The MJO surface salinity anomalies are consistent with precipitation minus evaporation fluxes in the Indian Ocean, and with anomalous zonal advection in the Pacific. The Argo sea surface temperature and thermocline depth anomalies are consistent with previous studies using other data sets. The near-surface density changes due to salinity are comparable to, and partially offset, those due to temperature, emphasising the importance of including salinity as well as temperature changes in mixed-layer modelling of tropical intraseasonal processes. The MJO-forced equatorial Kelvin wave that propagates along the thermocline in the Pacific extends down into the deep ocean, to at least 1,400 m. Coherent, statistically significant, MJO temperature and salinity anomalies are also present in the deep Indian Ocean

    Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent

    Get PDF
    Much research and speculation exists about the meteorological and climatological impacts of biomass burning in the Maritime Continent (MC) of Indonesia and Malaysia, particularly during El Nino events. However, the MC hosts some of the world's most complicated meteorology, and we wish to understand how tropical phenomena at a range of scales influence observed burning activity. Using Moderate Resolution Imaging Spectroradiometer (MODIS) derived active fire hotspot patterns coupled with aerosol data assimilation products, satellite based precipitation, and meteorological indices, the meteorological context of observed fire prevalence and smoke optical depth in the MC are examined. Relationships of burning and smoke transport to such meteorological and climatic factors as the interannual El Nino-Southern Oscillation (ENSO), El Nino Modoki, Indian Ocean Dipole (IOD), the seasonal migration of the Intertropical Convergence Zone, the 30–90 day Madden Julian Oscillation (MJO), tropical waves, tropical cyclone activity, and diurnal convection were investigated. A conceptual model of how all of the differing meteorological scales affect fire activity is presented. Each island and its internal geography have different sensitivities to these factors which are likely relatable to precipitation patterns and land use practices. At the broadest scales as previously reported, we corroborate ENSO is indeed the largest factor. However, burning is also enhanced by periods of El Nino Modoki. Conversely, IOD influences are unclear. While interannual phenomena correlate to total seasonal burning, the MJO largely controls when visible burning occurs. High frequency phenomena which are poorly constrained in models such as diurnal convection and tropical cyclone activity also have an impact which cannot be ignored. Finally, we emphasize that these phenomena not only influence burning, but also the observability of burning, further complicating our ability to assign reasonable emissions

    The North Atlantic subpolar gyre in four high resolution models

    Get PDF
    The authors present the first quantitative comparison between new velocity datasets and high-resolution models in the North Atlantic subpolar gyre [1/10° Parallel Ocean Program model (POPNA10), Miami Isopycnic Coordinate Ocean Model (MICOM), ° Atlantic model (ATL6), and Family of Linked Atlantic Ocean Model Experiments (FLAME)]. At the surface, the model velocities agree generally well with World Ocean Circulation Experiment (WOCE) drifter data. Two noticeable exceptions are the weakness of the East Greenland coastal current in models and the presence in the surface layers of a strong southwestward East Reykjanes Ridge Current. At depths, the most prominent feature of the circulation is the boundary current following the continental slope. In this narrow flow, it is found that gridded float datasets cannot be used for a quantitative comparison with models. The models have very different patterns of deep convection, and it is suggested that this could be related to the differences in their barotropic transport at Cape Farewell. Models show a large drift in watermass properties with a salinization of the Labrador Sea Water. The authors believe that the main cause is related to horizontal transports of salt because models with different forcing and vertical mixing share the same salinization problem. A remarkable feature of the model solutions is the large westward transport over Reykjanes Ridge [10 Sv (Sv ≡ 106 m3 s−1) or more

    An Urban Neo-Poverty Population-Based Quality of Life and Related Social Characteristics Investigation from Northeast China

    Get PDF
    OBJECTIVE: To investigate quality of life (QOL) and related characteristics among an urban neo-poverty population in northeast China, and to compare this population with a traditional poverty cohort. DESIGN: The research was a cross-sectional survey executed from June 2005 to October 2007, with a sample of 2940 individuals ages 36 to 55 in three different industrial cities of northeast China. Data were collected on QOL status and sociodemographic characteristics. QOL was assessed using the 36-item Short Form Health Survey (Chinese version). Multiple regression analysis was employed to analyze association between sociodemographic variables and QOL. RESULTS: The scores for QOL in the neo-poverty group were higher than those in the traditional poverty group, but lower than those in the general population. When the neo-poverty population was divided into two subgroups by age, 36-45 years and 46-55 years, the differences in QOL scores were not significant. However, there were significant differences in several dimensions between two subgroups according to unemployment time (<5 years and >5 years). Additionally, stepwise regression analysis indicated that disease burden, including disease and medical expenditures, was a common risk factor for declining QOL in the neo-poverty group. CONCLUSIONS: Despite some limitations, this study provides initial evidence that the QOL of the urban neo-poverty population lies between that of the general population and traditional poverty. QOL of the neo-poverty group approached QOL of the traditional poverty group with increased unemployment years. In addition to decreased income, disease burden is the most important factor influencing QOL status in urban neo-poverty
    • …
    corecore