254 research outputs found

    Cardiovascular risks of combined oral contraceptive use

    Get PDF
    Because of an increased risk of cardiovascular disease, the use of combined oral contraceptives (OCs) should be considered carefully in women who smoke and in those with hypertension or hyperlipidemia. (Strength of Recommendation: B, based on systematic reviews of case-control and cohort studies.) Combined OC use in patients with hypertension may increase the risk of peripheral arterial disease

    Mallard Use of Elevated Nesting Structures: Fifteen Years of Management in Eastern South Dakota

    Get PDF
    Studies of mallard use and nesting success on elevated structures have generally been of a short-term nature. In this report we evaluated 15 consecutive years of mallard nesting on elevated structures (baskets, cylinders, and culverts) located over standing water in wetland basins in eastern South Dakota. Our objectives were to: 1) determine long-term trends in mallard occupancy and nest success in nesting baskets, cylinders, and culverts, 2) evaluate the effects of various nest structure adaptations for enhancing mallard use and maintaining high nest success rates, and 3) provide managers with various enhancement techniques for mallard nesting structures that have proven productive in this long-term management effort

    Do Pine Trees in Aspen Stands Increase Bird Diversity

    Get PDF
    In the Black Hills of South Dakota, quaking aspen (Populus tremuloides) is being replaced by conifers through fire suppression and successional processes. Al- though the Black Hills National forest is removing conifers (primarily ponderosa pine [Pinus ponderosa])toincreasetheaspencommunitiesinsomemixedstands,ForestPlan guidelines allow four conifers per hectare to remain to increase diversity in the remaining aspen stand. We compared bird species richness in pure ponderosa pine, mixed stands dominated by ponderosa pine with quaking aspen, mixed stands dominated by aspen with ponderosa pine, and pure aspen stands. Stands dominated by ponderosa pine had lower (

    The Wild Turkey in South Dakota

    Get PDF
    This bulletin provides an extensive look at the wild turkey in South Dakota

    Identifying network communities with a high resolution

    Full text link
    Community structure is an important property of complex networks. An automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the optimization of a quantity called modularity (Q). However, the problem of modularity optimization is NP-hard, and the existing approaches often suffer from prohibitively long running time or poor quality. Furthermore, it has been recently pointed out that algorithms based on optimizing Q will have a resolution limit, i.e., communities below a certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm, Qcut, which combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks, we show that Qcut can find higher modularities and is more scalable than the existing algorithms. Furthermore, using Qcut as an essential component, we propose a recursive algorithm, HQcut, to solve the resolution limit problem. We show that HQcut can successfully detect communities at a much finer scale and with a higher accuracy than the existing algorithms. Finally, we apply Qcut and HQcut to study a protein-protein interaction network, and show that the combination of the two algorithms can reveal interesting biological results that may be otherwise undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at http://cic.cs.wustl.edu/qcut/supplemental.pd

    Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration

    Full text link
    In this paper, we consider the challenge of maximizing an unknown function f for which evaluations are noisy and are acquired with high cost. An iterative procedure uses the previous measures to actively select the next estimation of f which is predicted to be the most useful. We focus on the case where the function can be evaluated in parallel with batches of fixed size and analyze the benefit compared to the purely sequential procedure in terms of cumulative regret. We introduce the Gaussian Process Upper Confidence Bound and Pure Exploration algorithm (GP-UCB-PE) which combines the UCB strategy and Pure Exploration in the same batch of evaluations along the parallel iterations. We prove theoretical upper bounds on the regret with batches of size K for this procedure which show the improvement of the order of sqrt{K} for fixed iteration cost over purely sequential versions. Moreover, the multiplicative constants involved have the property of being dimension-free. We also confirm empirically the efficiency of GP-UCB-PE on real and synthetic problems compared to state-of-the-art competitors

    Finding and evaluating community structure in networks

    Full text link
    We propose and study a set of algorithms for discovering community structure in networks -- natural divisions of network nodes into densely connected subgroups. Our algorithms all share two definitive features: first, they involve iterative removal of edges from the network to split it into communities, the edges removed being identified using one of a number of possible "betweenness" measures, and second, these measures are, crucially, recalculated after each removal. We also propose a measure for the strength of the community structure found by our algorithms, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering community structure in both computer-generated and real-world network data, and show how they can be used to shed light on the sometimes dauntingly complex structure of networked systems.Comment: 16 pages, 13 figure

    Finding community structure in networks using the eigenvectors of matrices

    Get PDF
    We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as "modularity" over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.Comment: 22 pages, 8 figures, minor corrections in this versio

    Comparing community structure identification

    Full text link
    We compare recent approaches to community structure identification in terms of sensitivity and computational cost. The recently proposed modularity measure is revisited and the performance of the methods as applied to ad hoc networks with known community structure, is compared. We find that the most accurate methods tend to be more computationally expensive, and that both aspects need to be considered when choosing a method for practical purposes. The work is intended as an introduction as well as a proposal for a standard benchmark test of community detection methods.Comment: 10 pages, 3 figures, 1 table. v2: condensed, updated version as appears in JSTA

    Maximal planar networks with large clustering coefficient and power-law degree distribution

    Full text link
    In this article, we propose a simple rule that generates scale-free networks with very large clustering coefficient and very small average distance. These networks are called {\bf Random Apollonian Networks}(RAN) as they can be considered as a variation of Apollonian networks. We obtain the analytic results of power-law exponent γ=3\gamma =3 and clustering coefficient C=46/336ln3/20.74C={46/3}-36\texttt{ln}{3/2}\approx 0.74, which agree very well with the simulation results. We prove that the increasing tendency of average distance of RAN is a little slower than the logarithm of the number of nodes in RAN. Since most real-life networks are both scale-free and small-world networks, RAN may perform well in mimicking the reality. The RAN possess hierarchical structure as C(k)k1C(k)\sim k^{-1} that in accord with the observations of many real-life networks. In addition, we prove that RAN are maximal planar networks, which are of particular practicability for layout of printed circuits and so on. The percolation and epidemic spreading process are also studies and the comparison between RAN and Barab\'{a}si-Albert(BA) as well as Newman-Watts(NW) networks are shown. We find that, when the network order NN(the total number of nodes) is relatively small(as N104N\sim 10^4), the performance of RAN under intentional attack is not sensitive to NN, while that of BA networks is much affected by NN. And the diseases spread slower in RAN than BA networks during the outbreaks, indicating that the large clustering coefficient may slower the spreading velocity especially in the outbreaks.Comment: 13 pages, 10 figure
    corecore