246 research outputs found
Identifying network communities with a high resolution
Community structure is an important property of complex networks. An
automatic discovery of such structure is a fundamental task in many
disciplines, including sociology, biology, engineering, and computer science.
Recently, several community discovery algorithms have been proposed based on
the optimization of a quantity called modularity (Q). However, the problem of
modularity optimization is NP-hard, and the existing approaches often suffer
from prohibitively long running time or poor quality. Furthermore, it has been
recently pointed out that algorithms based on optimizing Q will have a
resolution limit, i.e., communities below a certain scale may not be detected.
In this research, we first propose an efficient heuristic algorithm, Qcut,
which combines spectral graph partitioning and local search to optimize Q.
Using both synthetic and real networks, we show that Qcut can find higher
modularities and is more scalable than the existing algorithms. Furthermore,
using Qcut as an essential component, we propose a recursive algorithm, HQcut,
to solve the resolution limit problem. We show that HQcut can successfully
detect communities at a much finer scale and with a higher accuracy than the
existing algorithms. Finally, we apply Qcut and HQcut to study a
protein-protein interaction network, and show that the combination of the two
algorithms can reveal interesting biological results that may be otherwise
undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at
http://cic.cs.wustl.edu/qcut/supplemental.pd
An evolving network model with community structure
Many social and biological networks consist of communities—groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties
Coexistence of opposite opinions in a network with communities
The Majority Rule is applied to a topology that consists of two coupled
random networks, thereby mimicking the modular structure observed in social
networks. We calculate analytically the asymptotic behaviour of the model and
derive a phase diagram that depends on the frequency of random opinion flips
and on the inter-connectivity between the two communities. It is shown that
three regimes may take place: a disordered regime, where no collective
phenomena takes place; a symmetric regime, where the nodes in both communities
reach the same average opinion; an asymmetric regime, where the nodes in each
community reach an opposite average opinion. The transition from the asymmetric
regime to the symmetric regime is shown to be discontinuous.Comment: 14 pages, 4 figure
Finding community structure in networks using the eigenvectors of matrices
We consider the problem of detecting communities or modules in networks,
groups of vertices with a higher-than-average density of edges connecting them.
Previous work indicates that a robust approach to this problem is the
maximization of the benefit function known as "modularity" over possible
divisions of a network. Here we show that this maximization process can be
written in terms of the eigenspectrum of a matrix we call the modularity
matrix, which plays a role in community detection similar to that played by the
graph Laplacian in graph partitioning calculations. This result leads us to a
number of possible algorithms for detecting community structure, as well as
several other results, including a spectral measure of bipartite structure in
networks and a new centrality measure that identifies those vertices that
occupy central positions within the communities to which they belong. The
algorithms and measures proposed are illustrated with applications to a variety
of real-world complex networks.Comment: 22 pages, 8 figures, minor corrections in this versio
Local Causal States and Discrete Coherent Structures
Coherent structures form spontaneously in nonlinear spatiotemporal systems
and are found at all spatial scales in natural phenomena from laboratory
hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary
climate dynamics. Phenomenologically, they appear as key components that
organize the macroscopic behaviors in such systems. Despite a century of
effort, they have eluded rigorous analysis and empirical prediction, with
progress being made only recently. As a step in this, we present a formal
theory of coherent structures in fully-discrete dynamical field theories. It
builds on the notion of structure introduced by computational mechanics,
generalizing it to a local spatiotemporal setting. The analysis' main tool
employs the \localstates, which are used to uncover a system's hidden
spatiotemporal symmetries and which identify coherent structures as
spatially-localized deviations from those symmetries. The approach is
behavior-driven in the sense that it does not rely on directly analyzing
spatiotemporal equations of motion, rather it considers only the spatiotemporal
fields a system generates. As such, it offers an unsupervised approach to
discover and describe coherent structures. We illustrate the approach by
analyzing coherent structures generated by elementary cellular automata,
comparing the results with an earlier, dynamic-invariant-set approach that
decomposes fields into domains, particles, and particle interactions.Comment: 27 pages, 10 figures;
http://csc.ucdavis.edu/~cmg/compmech/pubs/dcs.ht
Impact of propofol on mid-latency auditory-evoked potentials in children†
Background Propofol is increasingly used in paediatric anaesthesia, but can be challenging to titrate accurately in this group. Mid-latency auditory-evoked potentials (MLAEPs) can be used to help titrate propofol. However, the effects of propofol on MLAEP in children are unclear. Therefore, we investigated the relationship between propofol and MLAEP in children undergoing anaesthesia. Methods Fourteen healthy children aged 4-16 yr received anaesthesia for elective surgery. Before surgery, propofol was administered in three concentrations (3, 6, 9 µg ml−1) through a target-controlled infusion pump using Kataria and colleagues' model. MLAEPs were recorded 5 min after having reached each target propofol concentration at each respective concentration. Additionally, venous propofol blood concentrations were assayed at each measuring time point. Results Propofol increased all four MLAEP peak latencies (peaks Na, Pa, Nb, P1) in a dose-dependent manner. In addition, the differences in amplitudes were significantly smaller with increasing propofol target concentrations. The measured propofol plasma concentrations correlated positively with the latencies of the peaks Na, Pa, and Nb. Conclusions Propofol affects MLAEP latencies and amplitudes in children in a dose-dependent manner. MLAEP measurement might therefore be a useful tool for monitoring depth of propofol anaesthesia in childre
Employing with conviction: The experiences of employers who actively recruit criminalised people
Atherton, P., & Buck, G. Employing with conviction: The experiences of employers who actively recruit criminalised people. Probation Journal, 68(2), pp. 186-205. Copyright © [2021] (Copyright Holder). Reprinted by permission of SAGE Publications.In England and Wales, criminal reoffending costs £18 billion annually. Securing employment can support desistance from crime, but only 17% of ex-prisoners are employed a year after release. Understanding the motivations of employers who do recruit criminalised people therefore represents an important area of inquiry. This article draws upon qualitative interviews with twelve business leaders in England who proactively employ criminalised people. Findings reveal that inclusive recruitment can be (indirectly) encouraged by planning policies aimed to improve social and environmental well-being and that employers often work creatively to meet employees’ additional needs, resulting in commercial benefits and (re)settlement opportunities
Maximal planar networks with large clustering coefficient and power-law degree distribution
In this article, we propose a simple rule that generates scale-free networks
with very large clustering coefficient and very small average distance. These
networks are called {\bf Random Apollonian Networks}(RAN) as they can be
considered as a variation of Apollonian networks. We obtain the analytic
results of power-law exponent and clustering coefficient
, which agree very well with the
simulation results. We prove that the increasing tendency of average distance
of RAN is a little slower than the logarithm of the number of nodes in RAN.
Since most real-life networks are both scale-free and small-world networks, RAN
may perform well in mimicking the reality. The RAN possess hierarchical
structure as that in accord with the observations of many
real-life networks. In addition, we prove that RAN are maximal planar networks,
which are of particular practicability for layout of printed circuits and so
on. The percolation and epidemic spreading process are also studies and the
comparison between RAN and Barab\'{a}si-Albert(BA) as well as Newman-Watts(NW)
networks are shown. We find that, when the network order (the total number
of nodes) is relatively small(as ), the performance of RAN under
intentional attack is not sensitive to , while that of BA networks is much
affected by . And the diseases spread slower in RAN than BA networks during
the outbreaks, indicating that the large clustering coefficient may slower the
spreading velocity especially in the outbreaks.Comment: 13 pages, 10 figure
Minding impacting events in a model of stochastic variance
We introduce a generalisation of the well-known ARCH process, widely used for
generating uncorrelated stochastic time series with long-term non-Gaussian
distributions and long-lasting correlations in the (instantaneous) standard
deviation exhibiting a clustering profile. Specifically, inspired by the fact
that in a variety of systems impacting events are hardly forgot, we split the
process into two different regimes: a first one for regular periods where the
average volatility of the fluctuations within a certain period of time is below
a certain threshold and another one when the local standard deviation
outnumbers it. In the former situation we use standard rules for
heteroscedastic processes whereas in the latter case the system starts
recalling past values that surpassed the threshold. Our results show that for
appropriate parameter values the model is able to provide fat tailed
probability density functions and strong persistence of the instantaneous
variance characterised by large values of the Hurst exponent is greater than
0.8, which are ubiquitous features in complex systems.Comment: 18 pages, 5 figures, 1 table. To published in PLoS on
Finding and evaluating community structure in networks
We propose and study a set of algorithms for discovering community structure
in networks -- natural divisions of network nodes into densely connected
subgroups. Our algorithms all share two definitive features: first, they
involve iterative removal of edges from the network to split it into
communities, the edges removed being identified using one of a number of
possible "betweenness" measures, and second, these measures are, crucially,
recalculated after each removal. We also propose a measure for the strength of
the community structure found by our algorithms, which gives us an objective
metric for choosing the number of communities into which a network should be
divided. We demonstrate that our algorithms are highly effective at discovering
community structure in both computer-generated and real-world network data, and
show how they can be used to shed light on the sometimes dauntingly complex
structure of networked systems.Comment: 16 pages, 13 figure
- …