52 research outputs found
Transplanting the leafy liverwort Herbertus hutchinsiae : A suitable conservation tool to maintain oceanic-montane liverwort-rich heath?
Thanks to the relevant landowners and managers for permission to carry out the experiments, Chris Preston for helping to obtain the liverwort distribution records and the distribution map, Gordon Rothero and Dave Horsfield for advice on choosing experimental sites and Alex Douglas for statistical advice. Juliane Geyer’s help with fieldwork was greatly appreciated. This study was made possible by a NERC PhD studentship and financial support from the Royal Botanic Garden Edinburgh and Scottish Natural Heritage.Peer reviewedPostprin
Quantifying Co-Oligomer Formation by α-Synuclein.
Small oligomers of the protein α-synuclein (αS) are highly cytotoxic species associated with Parkinson's disease (PD). In addition, αS can form co-aggregates with its mutational variants and with other proteins such as amyloid-β (Aβ) and tau, which are implicated in Alzheimer's disease. The processes of self-oligomerization and co-oligomerization of αS are, however, challenging to study quantitatively. Here, we have utilized single-molecule techniques to measure the equilibrium populations of oligomers formed in vitro by mixtures of wild-type αS with its mutational variants and with Aβ40, Aβ42, and a fragment of tau. Using a statistical mechanical model, we find that co-oligomer formation is generally more favorable than self-oligomer formation at equilibrium. Furthermore, self-oligomers more potently disrupt lipid membranes than do co-oligomers. However, this difference is sometimes outweighed by the greater formation propensity of co-oligomers when multiple proteins coexist. Our results suggest that co-oligomer formation may be important in PD and related neurodegenerative diseases.The authors are grateful for financial support provided by Dr Tayyeb Hussain Scholarship and the ERC (669237) (M. Iljina), the Schiff Foundation (A. Dear), Alzheimer’s Research UK and Marie-Curie Individual Fellowship (S. De), a fellowship from Fondazione Caritro, Trento (BANDO 2017 PER PROGETTI DI RICERCA SVOLTI DA GIOVANI RICERCATORI POST-DOC) (L. Tosatto), the Boehringer Ingelheim Fonds and the Studienstiftung des deutschen Volkes (P. Flagmeier), the Centre for Misfolding Diseases (A. Dear, P. Flagmeier, C. Dobson, T. Knowles), the ERC (669237) and the Royal Society (D. Klenerman). We are grateful to S. Preet for the expression and purification of A90C ɑS. We thank Y. Ye for providing tau k18
Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms.
Protein aggregation is a complex process resulting in the formation of heterogeneous mixtures of aggregate populations that are closely linked to neurodegenerative conditions, such as Alzheimer's disease. Here, we find that soluble aggregates formed at different stages of the aggregation process of amyloid beta (Aβ42) induce the disruption of lipid bilayers and an inflammatory response to different extents. Further, by using gradient ultracentrifugation assay, we show that the smaller aggregates are those most potent at inducing membrane permeability and most effectively inhibited by antibodies binding to the C-terminal region of Aβ42. By contrast, we find that the larger soluble aggregates are those most effective at causing an inflammatory response in microglia cells and more effectively inhibited by antibodies targeting the N-terminal region of Aβ42. These findings suggest that different toxic mechanisms driven by different soluble aggregated species of Aβ42 may contribute to the onset and progression of Alzheimer's disease.This study is supported by the Marie-Curie Individual Fellowship programme (S.D.), EPSRC Studentship (D.C.W.), Boehringer Ingelheim Fonds (P.F.), Studienstiftung des deutschen Volkes (P.F.), Senior Research Fellowship from the Alzheimer's Society, Grant Number 317, AS-SF-16-003, UK (F.A.A), Swiss National Fondation for Science and Darwin College grant number P2ELP2_162116 and P300P2_171219 (F.S.R.), Borysiewicz Biomedical Fellowship from the University of Cambridge(P.S), the UK Biotechnology and Biochemical Sciences Research Council (C.M.D.); the Wellcome Trust (C.M.D) the Cambridge Centre for Misfolding Diseases (P.F., F.A.A., P.S., C.M.D., and M.V.) and the European Research Council Grant Number 669237 (D.K.) and the Royal Society (D.K.)
A natural product inhibits the initiation of a-synuclein aggregation & suppresses its toxicity
The self-Assembly of a-synuclein is closely associated with Parkinson''s disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects a-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces a-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of a-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing a-synuclein, observing a dramatic reduction of a-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson''s disease and related conditions
A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity.
The self-assembly of α-synuclein is closely associated with Parkinson's disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson's disease and related conditions.This work was supported by the Intramural Research Program
of the National Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK), US National Institutes of Health (A.M. and A.B.); by the Boehringer
Ingelheim Fonds (P.F.); by a European Research Council starting grant (to
M.B.D.M. and E.A.A.N.); and by The Cambridge Centre for Misfolding
Diseases. N.C. thanks the Spanish Ministry of Economy and Competitiveness
(RYC-2012-12068). S.W.C. thanks the Agency for Science, Technology, and
Research, Singapore for support
Multistep Inhibition of α-Synuclein Aggregation and Toxicity in Vitro and in Vivo by Trodusquemine
12 pags, 3 figs. -- The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.8b00466.The aggregation of α-synuclein, an intrinsically disordered protein that is highly abundant in neurons, is closely associated with the onset and progression of Parkinson's disease. We have shown previously that the aminosterol squalamine can inhibit the lipid induced initiation process in the aggregation of α-synuclein, and we report here that the related compound trodusquemine is capable of inhibiting not only this process but also the fibril-dependent secondary pathways in the aggregation reaction. We further demonstrate that trodusquemine can effectively suppress the toxicity of α-synuclein oligomers in neuronal cells, and that its administration, even after the initial growth phase, leads to a dramatic reduction in the number of α-synuclein inclusions in a Caenorhabditis elegans model of Parkinson's disease, eliminates the related muscle paralysis, and increases lifespan. On the basis of these findings, we show that trodusquemine is able to inhibit multiple events in the aggregation process of α-synuclein and hence to provide important information about the link between such events and neurodegeneration, as it is initiated and progresses. Particularly in the light of the previously reported ability of trodusquemine to cross the blood-brain barrier and to promote tissue regeneration, the present results suggest that this compound has the potential to be an important therapeutic candidate for Parkinson's disease and related disorders.This work was supported by the Boehringer Ingelheim Fonds (P.F.), the Studienstiftung des Deutschen Volkes (P.F.), Gates Cambridge Scholarships (R.L. and G.T.H) and a St. John’s College Benefactors’ Scholarship (R.L.), the UK Biotechnology and Biochemical Sciences Research Council (M.V. and C.M.D.), a Senior Research Fellowship award from the Alzheimer’s Society, UK, grant number (317, AS-SF-16-003) (F.A.A.), the Wellcome Trust (C.M.D., M.V., and T.P.J.K.), the Frances and Augustus Newman Foundation (T.P.J.K.), the Regione Toscana—FAS Salute—Supremal project (R.C., C.C., and F.C.), a Marie Skłodowska-Curie Actions—Individual Fellowship (C.G.), Sidney Sussex College Cambridge (G.M.), the Spanish Government—MINECO (N.C.), and by the Cambridge Centre for Misfolding Diseases (M.P., P.F., R.L., F.A.A., C.G., G.T.H., S.W.C., J.R.K., T.P.J.K., M.V., and C.M.D)
Multistep Inhibition of α-Synuclein Aggregation and Toxicity in Vitro and in Vivo by Trodusquemine.
The aggregation of α-synuclein, an intrinsically disordered protein that is highly abundant in neurons, is closely associated with the onset and progression of Parkinson's disease. We have shown previously that the aminosterol squalamine can inhibit the lipid induced initiation process in the aggregation of α-synuclein, and we report here that the related compound trodusquemine is capable of inhibiting not only this process but also the fibril-dependent secondary pathways in the aggregation reaction. We further demonstrate that trodusquemine can effectively suppress the toxicity of α-synuclein oligomers in neuronal cells, and that its administration, even after the initial growth phase, leads to a dramatic reduction in the number of α-synuclein inclusions in a Caenorhabditis elegans model of Parkinson's disease, eliminates the related muscle paralysis, and increases lifespan. On the basis of these findings, we show that trodusquemine is able to inhibit multiple events in the aggregation process of α-synuclein and hence to provide important information about the link between such events and neurodegeneration, as it is initiated and progresses. Particularly in the light of the previously reported ability of trodusquemine to cross the blood-brain barrier and to promote tissue regeneration, the present results suggest that this compound has the potential to be an important therapeutic candidate for Parkinson's disease and related disorders
Wild-type sTREM2 blocks Aβ aggregation and neurotoxicity, but the Alzheimer's R47H mutant increases Aβ aggregation.
TREM2 is a pattern recognition receptor, expressed on microglia and myeloid cells, detecting lipids and Aβ and inducing an innate immune response. Missense mutations (e.g., R47H) of TREM2 increase risk of Alzheimer's disease (AD). The soluble ectodomain of wild-type TREM2 (sTREM2) has been shown to protect against AD in vivo, but the underlying mechanisms are unclear. We show that Aβ oligomers bind to cellular TREM2, inducing shedding of the sTREM2 domain. Wild-type sTREM2 bound to Aβ oligomers (measured by single-molecule imaging, dot blots, and Bio-Layer Interferometry) inhibited Aβ oligomerization and disaggregated preformed Aβ oligomers and protofibrils (measured by transmission electron microscopy, dot blots, and size-exclusion chromatography). Wild-type sTREM2 also inhibited Aβ fibrillization (measured by imaging and thioflavin T fluorescence) and blocked Aβ-induced neurotoxicity (measured by permeabilization of artificial membranes and by loss of neurons in primary neuronal-glial cocultures). In contrast, the R47H AD-risk variant of sTREM2 is less able to bind and disaggregate oligomeric Aβ but rather promotes Aβ protofibril formation and neurotoxicity. Thus, in addition to inducing an immune response, wild-type TREM2 may protect against amyloid pathology by the Aβ-induced release of sTREM2, which blocks Aβ aggregation and neurotoxicity. In contrast, R47H sTREM2 promotes Aβ aggregation into protofibril that may be toxic to neurons. These findings may explain how wild-type sTREM2 apparently protects against AD in vivo and why a single copy of the R47H variant gene is associated with increased AD risk.European Unio
Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease.
The aggregation of α-synuclein is a hallmark of Parkinson's disease (PD) and a variety of related neurological disorders. A number of mutations in this protein, including A30P and A53T, are associated with familial forms of the disease. Patients carrying the A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD, while those carrying the A53T mutation generally have an earlier age of onset and an accelerated progression. We report two C. elegans models of PD (PDA30P and PDA53T), which express these mutational variants in the muscle cells, and probed their behavior relative to animals expressing the wild-type protein (PDWT). PDA30P worms showed a reduced speed of movement and an increased paralysis rate, control worms, but no change in the frequency of body bends. By contrast, in PDA53T worms both speed and frequency of body bends were significantly decreased, and paralysis rate was increased. α-Synuclein was also observed to be less well localized into aggregates in PDA30P worms compared to PDA53T and PDWT worms, and amyloid-like features were evident later in the life of the animals, despite comparable levels of expression of α-synuclein. Furthermore, squalamine, a natural product currently in clinical trials for treating symptomatic aspects of PD, was found to reduce significantly the aggregation of α-synuclein and its associated toxicity in PDA53T and PDWT worms, but had less marked effects in PDA30P. In addition, using an antibody that targets the N-terminal region of α-synuclein, we observed a suppression of toxicity in PDA30P, PDA53T and PDWT worms. These results illustrate the use of these two C. elegans models in fundamental and applied PD research
- …