11 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    In Case of Fire, Escape or Die: A Trait-Based Approach for Identifying Animal Species Threatened by Fire

    No full text
    Recent studies have argued that changes in fire regimes in the 21st century are posing a major threat to global biodiversity. In this scenario, incorporating species’ physiological, ecological, and evolutionary traits with their local fire exposure might facilitate accurate identification of species most at risk from fire. Here, we developed a framework for identifying the animal species most vulnerable to extinction from fire-induced stress in the Brazilian savanna. The proposed framework addresses vulnerability from two components: (1) exposure, which refers to the frequency, extent, and magnitude to which a system or species experiences fire, and (2) sensitivity, which reflects how much species are affected by fire. Sensitivity is based on biological, physiological, and behavioral traits that can influence animals’ mortality “during” and “after” fire. We generated a Fire Vulnerability Index (FVI) that can be used to group species into four categories, ranging from extremely vulnerable (highly sensible species in highly exposed areas), to least vulnerable (low-sensitivity species in less exposed areas). We highlight the urgent need to broaden fire vulnerability assessment methods and introduce a new approach considering biological traits that contribute significantly to a species’ sensitivity alongside regional/local fire exposure

    Attributable mortality due to nosocomial sepsis in Brazilian hospitals: a case–control study

    No full text
    Abstract Background Nosocomial sepsis is a major healthcare issue, but there are few data on estimates of its attributable mortality. We aimed to estimate attributable mortality fraction (AF) due to nosocomial sepsis. Methods Matched 1:1 case–control study in 37 hospitals in Brazil. Hospitalized patients in participating hospitals were included. Cases were hospital non-survivors and controls were hospital survivors, which were matched by admission type and date of discharge. Exposure was defined as occurrence of nosocomial sepsis, defined as antibiotic prescription plus presence of organ dysfunction attributed to sepsis without an alternative reason for organ failure; alternative definitions were explored. Main outcome measurement was nosocomial sepsis-attributable fractions, estimated using inversed-weight probabilities methods using generalized mixed model considering time-dependency of sepsis occurrence. Results 3588 patients from 37 hospitals were included. Mean age was 63 years and 48.8% were female at birth. 470 sepsis episodes occurred in 388 patients (311 in cases and 77 in control group), with pneumonia being the most common source of infection (44.3%). Average AF for sepsis mortality was 0.076 (95% CI 0.068–0.084) for medical admissions; 0.043 (95% CI 0.032–0.055) for elective surgical admissions; and 0.036 (95% CI 0.017–0.055) for emergency surgeries. In a time-dependent analysis, AF for sepsis rose linearly for medical admissions, reaching close to 0.12 on day 28; AF plateaued earlier for other admission types (0.04 for elective surgery and 0.07 for urgent surgery). Alternative sepsis definitions yield different estimates. Conclusion The impact of nosocomial sepsis on outcome is more pronounced in medical admissions and tends to increase over time. The results, however, are sensitive to sepsis definitions

    Standard probatório para condenação e dúvida razoável no processo penal: análise das possíveis contribuições ao ordenamento brasileiro

    No full text

    NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics

    No full text
    Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data
    corecore