27 research outputs found

    Polyfunctional T cell responses in children in early stages of chronic Trypanosoma cruzi infection contrast with monofunctional responses of long-term infected adults

    Get PDF
    Background: Adults with chronic Trypanosoma cruzi exhibit a poorly functional T cell compartment, characterized by monofunctional (IFN-γ-only secreting) parasite-specific T cells and increased levels of terminally differentiated T cells. It is possible that persistent infection and/or sustained exposure to parasites antigens may lead to a progressive loss of function of the immune T cells. Methodology/Principal Findings: To test this hypothesis, the quality and magnitude of T. cruzi-specific T cell responses were evaluated in T. cruzi-infected children and compared with long-term T. cruzi-infected adults with no evidence of heart failure. The phenotype of CD4+ T cells was also assessed in T. cruzi-infected children and uninfected controls. Simultaneous secretion of IFN-γ and IL-2 measured by ELISPOT assays in response to T. cruzi antigens was prevalent among T. cruzi-infected children. Flow cytometric analysis of co-expression profiles of CD4+ T cells with the ability to produce IFN-γ, TNF-α, or to express the co-stimulatory molecule CD154 in response to T. cruzi showed polyfunctional T cell responses in most T. cruzi-infected children. Monofunctional T cell responses and an absence of CD4+TNF-α+-secreting T cells were observed in T. cruzi-infected adults. A relatively high degree of activation and differentiation of CD4+ T cells was evident in T. cruzi-infected children. Conclusions/Significance: Our observations are compatible with our initial hypothesis that persistent T. cruzi infection promotes eventual exhaustion of immune system, which might contribute to disease progression in long-term infected subjects.Fil: Albareda, María Cecilia. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: de Rissio, Ana María. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; ArgentinaFil: Tomas, Gonzalo. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; ArgentinaFil: Serjan, Alicia. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Juan A. Fernández"; ArgentinaFil: Alvarez, María Gabriela. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Viotti, Rodolfo Jorge. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Fichera, Laura Edith. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Esteva, Mónica Inés. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; ArgentinaFil: Potente, Daniel Fernando. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Armenti, Alejandro. Provincia de Buenos Aires. Ministerio de Salud. Hospital Interzonal de Agudos "Eva Perón"; ArgentinaFil: Tarleton, Rick L.. University of Georgia; Estados UnidosFil: Laucella, Susana Adriana. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud. Instituto Nacional de Parasitología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    hnRNP I Inhibits Notch Signaling and Regulates Intestinal Epithelial Homeostasis in the Zebrafish

    Get PDF
    Regulated intestinal stem cell proliferation and differentiation are required for normal intestinal homeostasis and repair after injury. The Notch signaling pathway plays fundamental roles in the intestinal epithelium. Despite the fact that Notch signaling maintains intestinal stem cells in a proliferative state and promotes absorptive cell differentiation in most species, it remains largely unclear how Notch signaling itself is precisely controlled during intestinal homeostasis. We characterized the intestinal phenotypes of brom bones, a zebrafish mutant carrying a nonsense mutation in hnRNP I. We found that the brom bones mutant displays a number of intestinal defects, including compromised secretory goblet cell differentiation, hyperproliferation, and enhanced apoptosis. These phenotypes are accompanied by a markedly elevated Notch signaling activity in the intestinal epithelium. When overexpressed, hnRNP I destabilizes the Notch intracellular domain (NICD) and inhibits Notch signaling. This activity of hnRNP I is conserved from zebrafish to human. In addition, our biochemistry experiments demonstrate that the effect of hnRNP I on NICD turnover requires the C-terminal portion of the RAM domain of NICD. Our results demonstrate that hnRNP I is an evolutionarily conserved Notch inhibitor and plays an essential role in intestinal homeostasis

    Studying ignition schemes on European laser facilities

    No full text
    Demonstrating ignition and net energy gain in the near future on MJ-class laser facilities will be a major step towards determining the feasibility of Inertial Fusion Energy (IFE), in Europe as in the United States. The current status of the French Laser MegaJoule (LMJ) programme, from the laser facility construction to the indirectly driven central ignition target design, is presented, as well as validating experimental campaigns, conducted, as part of this programme, on various laser facilities. However, the viability of the IFE approach strongly depends on our ability to address the salient questions related to efficiency of the target design and laser driver performances. In the overall framework of the European HiPER project, two alternative schemes both relying on decoupling target compression and fuel heating-fast ignition (FI) and shock ignition (SI)-are currently considered. After a brief presentation of the HiPER project's objectives, FI and SI target designs are discussed. Theoretical analysis and 2D simulations will help to understand the unresolved key issues of the two schemes. Finally, the on-going European experimental effort to demonstrate their viability on currently operated laser facilities is described

    The K153R Polymorphism in the Myostatin Gene and Muscle Power Phenotypes in Young, Non-Athletic Men

    Get PDF
    The Lys(K)153Arg(R) polymorphism in exon 2 (rs1805086, 2379 A>G replacement) of the myostatin (MSTN) gene is a candidate to influence skeletal muscle phenotypes. We examined the association between the MSTN K153R polymorphism and ‘explosive’ leg power, assessed during sprint (30 m) and stationary jumping tests [squat (SJ) and counter-movement jumps (CMJ)] in non-athletic young adults (University students) [n = 281 (214 men); age: 21–32 years]. We also genotyped the MSTN exonic variants E164K (rs35781413), I225T, and P198A, yet no subject carried any of these variant MSTN alleles. As for the K153R polymorphism, we found only one woman with the KR genotype; thus, we presented the results only for men. The results of a one-way ANCOVA (with age, weight and height entered as covariates) showed that men with the KR genotype (n = 15) had a worse performance in vertical jumps compared with those with the KK genotype [SJ: vertical displacement of center of gravity (CG) of 35.17±1.42 vs. 39.06±0.39 cm, respectively, P = 0.009; CMJ: vertical displacement of CG of 36.44±1.50 vs. 40.63±0.41 cm, respectively, P = 0.008]. The results persisted after adjusting for multiple comparisons according to Bonferroni. Performance in 30 m sprint tests did however not differ by K153R genotypes. In summary, the MSTN K153R polymorphism is associated with the ability to produce ‘peak’ power during muscle contractions, as assessed with vertical jump tests, in young non-athletic men. Although more research is still needed, this genetic variation is among the numerous candidates to explain, alone or in combination with other polymorphisms, individual variations in muscle phenotypes
    corecore