615 research outputs found

    Three-dimensional simulations of laser-plasma interactions at ultrahigh intensities

    Get PDF
    Three-dimensional (3D) particle-in-cell (PIC) simulations are used to investigate the interaction of ultrahigh intensity lasers (>1020> 10^{20} W/cm−2^{-2}) with matter at overcritical densities. Intense laser pulses are shown to penetrate up to relativistic critical density levels and to be strongly self-focused during this process. The heat flux of the accelerated electrons is observed to have an annular structure when the laser is tightly focused, showing that a large fraction of fast electrons is accelerated at an angle. These results shed light into the multi-dimensional effects present in laser-plasma interactions of relevance to fast ignition of fusion targets and laser-driven ion acceleration in plasmas.Comment: 2 pages, 1 figur

    Strongest gravitational waves from neutrino oscillations at supernova core bounce

    Get PDF
    Resonant active-to-active (νa → νa), as well as active-to-sterile (νa → νs) neutrino (ν) oscillations can take place during the core bounce of a supernova collapse. Besides, over this phase, weak magnetism increases the antineutrino (¯ν) mean free path, and thus its luminosity. Because the oscillation feeds massenergy into the target ν species, the large mass-squared difference between the species (νa → νs) implies a huge amount of energy to be given off as gravitational waves (LGW ∼ 1049 erg s−1), due to anisotropic but coherent ν flow over the oscillation length. This asymmetric ν-flux is driven by both the spin–magnetic and the universal spin–rotation coupling. The novel contribution of this paper stems from (1) the new computation of the anisotropy parameter α ∼ 0.1–0.01, and (2) the use of the tight constraints from neutrino experiments as SNO and KamLAND, and the cosmic probe WMAP, to compute the gravitational-wave emission during neutrino oscillations in supernovae core collapse and bounce. We show that the mass of the sterile neutrino νs that can be resonantly produced during the flavor conversions makes it a good candidate for dark matter as suggested by Fuller et al., Phys. Rev. D 68, 103002 (2003). The new spacetime strain thus estimated is still several orders of magnitude larger than those from ν diffusion (convection and cooling) or quadrupole moments of neutron star matter. This new feature turns these bursts into the more promising supernova gravitational-wave signals that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies

    Melanin-concentrating hormone in peripheral circulation in the human

    Get PDF
    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide with a well-characterised role in energy homeostasis and emergent roles in diverse physiologic functions such as arousal, mood and reproduction. Work to date has predominantly focused on its hypothalamic functions using animal models; however, little attention has been paid to its role in circulation in humans. The aims of this study were to (a) develop a radioimmunoassay for the detection of MCH in human plasma; (b) establish reference ranges for circulating MCH and (c) characterise the pattern of expression of circulating MCH in humans. A sensitive and specific RIA was developed and cross-validated by RP-HPLC and MS. The effective range was 19.5–1248 pg MCH/mL. Blood samples from 231 subjects were taken to establish a reference range of 19.5–55.4 pg/mL for fasting MCH concentrations. There were no significant differences between male and female fasting MCH concentrations; however, there were correlations between MCH concentrations and BMI in males and females with excess fat (P < 0.001 and P = 0.020) and between MCH concentrations and fat mass in females with excess fat (P = 0.038). Plasma MCH concentrations rose significantly after feeding in a group of older individuals (n = 50, males P = 0.006, females P = 0.023). There were no robust significant correlations between fasting or post-prandial MCH and resting metabolic rate, plasma glucose, insulin or leptin concentrations although there were correlations between circulating MCH and leptin concentrations in older individuals (P = 0.029). These results indicate that the role of circulating MCH may not be reflective of its regulatory hypothalamic role

    One-to-one full scale simulations of laser wakefield acceleration using QuickPIC

    Get PDF
    We use the quasi-static particle-in-cell code QuickPIC to perform full-scale, one-to-one LWFA numerical experiments, with parameters that closely follow current experimental conditions. The propagation of state-of-the-art laser pulses in both preformed and uniform plasma channels is examined. We show that the presence of the channel is important whenever the laser self-modulations do not dominate the propagation. We examine the acceleration of an externally injected electron beam in the wake generated by 10 J laser pulses, showing that by using ten-centimeter-scale plasma channels it is possible to accelerate electrons to more than 4 GeV. A comparison between QuickPIC and 2D OSIRIS is provided. Good qualitative agreement between the two codes is found, but the 2D full PIC simulations fail to predict the correct laser and wakefield amplitudes.Comment: 5 pages, 5 figures, accepted for publication IEEE TPS, Special Issue - Laser & Plasma Accelerators - 8/200

    Ion-channel laser growth rate and beam quality requirements

    Get PDF
    In this paper, we determine the growth rate of the exponential radiation amplification in the ion-channel laser, where a relativistic electron beam wiggles in a focusing ion channel that can be created in a wakefield accelerator. For the first time the radiation diffraction, which can limit the amplification, is taken into account. The electron beam quality requirements to obtain this amplification are also presented. It is shown that both the beam energy and wiggler parameter spreads should be limited. Two-dimensional and three-dimensional particle-in-cell simulations of the self-consistent ion-channel laser confirm our theoretical predictions.info:eu-repo/semantics/acceptedVersio

    Weibel-instability-mediated collisionless shocks in the laboratory with ultraintense lasers

    Get PDF
    WOS:000305032100015The formation of nonrelativistic collisionless shocks in the laboratory with ultrahigh intensity lasers is studied via ab initio multidimensional particle-in-cell simulations. The microphysics behind shock formation and dissipation and the detailed shock structure are analyzed, illustrating that the Weibel instability plays a crucial role in the generation of strong subequipartition magnetic fields that isotropize the incoming flow and lead to the formation of a collisionless shock, similar to what occurs in astrophysical scenarios. The possibility of generating such collisionless shocks in the laboratory opens the way to the direct study of the physics associated with astrophysical shocks

    Avaliação do teor de carotenoides totais em acessos do banco ativo de germoplasma da Embrapa.

    Get PDF
    mandioca (Manihot esculenta Crantz) é considerada um alimento tradicional para muitas populações. Nas regiões que sofrem com a carência de vitamina A, a mandioca com a cor da polpa amarelada pode ser importante por conter o &#946;-caroteno em sua raiz

    Enhanced stopping of macro-particles in particle-in-cell simulations

    Get PDF
    We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q(2)/m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles.info:eu-repo/semantics/publishedVersio
    • …
    corecore