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We derive an equation for energy transfer from relativistic charged particles to a cold background

plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes.

Expressions for one-, two-, and three-dimensional particles are presented, with special attention given

to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the

background plasma by the relativistic particle. The enhanced stopping is dependent on the q2/m, where

q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles

with large charge but identical q/m will stop more rapidly. The stopping power also depends on the

effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell

simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated

fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect

the results of these simulations in a wide range of high-energy density plasma scenarios. We

also describe a particle splitting algorithm which can potentially overcome this problem and

show its effect in controlling the stopping of macro-particles. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4875708]

I. INTRODUCTION

Particle-In-Cell (PIC) simulations1,2 are a useful tool for

studying nonlinear and kinetic physics such as those found in

laser-solid interactions,3,4 fast ignition inertial fusion

energy,5–9 and relativistic collisionless shocks.10,11 Since

PIC codes are based on first principles they, along with

Vlasov and Vlasov Fokker-Planck codes,12,13 are a preferred

tool to explore physics in regimes where details of the distri-

bution function affect the overall behavior of the system,

where there have not been many experiments, or where ex-

perimental results are not well understood. For instance, in

relativistic laser-solid interactions, fast ignition, and relativ-

istic shock studies fully kinetic simulations that resolve the

electron dynamics are necessary, and PIC simulations have

been used extensively. In these problems, the flow of relativ-

istic electrons in a background plasma is an important pro-

cess. However, the physical scale length that needs to be

resolved in these systems is the collisionless skin depth and

not the Debye length. As the Debye length needs to be

resolved in order to avoid numerical grid heating which

results from aliasing, the resolution used in such simulations

is sometimes much finer or the electron temperature is much

higher than necessary. The use of higher order splines, and

current smoothing and compensation can eliminate grid heat-

ing permitting larger cells and/or lower temperatures to be

used.2,14 The use of larger cells also permits larger simula-

tions that model the full spatial domains of the problems of

interest. In order to carry out such large simulations in multi-

ple dimensions, it is common to limit the number of particles

per cell, which is generally chosen at a value that keeps spu-

rious finite size particle collisions and noise to a sufficiently

small value.

Here, we describe and quantify another effect that needs

to be considered in PIC simulations when relativistic elec-

trons are present.15,16 This work was originally motivated by

studies of fast ignition relevant plasmas.7 In these simula-

tions, a high intensity laser self-consistently generates a dis-

tribution of relativistic electrons with densities up to

�1022 cm�3 moving through a 1023 cm�3–1024 cm�3 density

background plasma.6,7,17 In a previous paper,7 we observed

an anomalous relaxation of the tail in the distribution func-

tion of these high-energy electrons in 1023 cm�3 density

plasma; we ascribed this relaxation to the effect of plasmon

emission, or wake excitation, in a turbulent plasma.

Although plasmon emission is a physical effect, in this pa-

per, we show that its importance on a single particle is

enhanced by the use of macro-particles in PIC codes. We

show that the stopping power of relativistic electrons due to

plasmon emission scales as q2/m, where q is the charge and

m is the mass of the simulated relativistic electrons. In PIC

simulations, the ratio q/m of the simulated particles is kept

consistent with real electrons, but the mass and hence the

charge can be many times greater, thus strongly affecting the

energy exchange between relativistic electrons and back-

ground plasma. In addition, the stopping power will depend

on the dimensionality of the simulation and on the shape of

the macro-particles. This artificially high plasmon emission

can be controlled by using more particles per cell, larger

cells, and higher order particle shapes. This is similar to how

1070-664X/2014/21(5)/052703/11/$30.00 VC 2014 AIP Publishing LLC21, 052703-1

PHYSICS OF PLASMAS 21, 052703 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

46.193.140.133 On: Thu, 15 May 2014 19:57:28

http://dx.doi.org/10.1063/1.4875708
http://dx.doi.org/10.1063/1.4875708
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4875708&domain=pdf&date_stamp=2014-05-15


collisions and fluctuations are controlled in a PIC code. In

this paper, we derive expressions for the stopping power of

relativistic electrons in PIC simulations and discuss how pa-

rameters can be chosen to reduce this effect with an empha-

sis on two-dimensional (2D) simulations of fast ignition

relevant plasmas. These results are also relevant to general

laser-solid interaction and relativistic shock simulations.

This paper is organized as follows. In Sec. II, the equa-

tions for the macro-particle stopping of high energy particles

in 2D PIC simulations by energy transfer through wakes are

derived. The 1D and 3D cases are also discussed. In Sec. III,

the importance of macro-particle stopping in fast ignition sim-

ulations is discussed and the stopping of single particles in a

nominal fast ignition plasma is analyzed. Sec. IV addresses

the relaxation of high-energy tails of the electron distribution

function due to macro-particle stopping. In Sec. V, we turn to

full-scale fast ignition simulations and analyze how varying

the number of particles per skin depth in isolated target simu-

lations changes the results. In Sec. VI, a particle splitting tech-

nique we have developed is presented which reduces the

effect of stopping by reducing the charge on each high energy

electron. Finally, in Sec. VII, we summarize our results.

II. THEORY

A charged particle moving faster than the thermal veloc-

ity in a plasma forms density wakes. The electric field of the

wake at the location of the particle will do work on the parti-

cle and slow it down. To find the energy loss due to these

wakes, we will consider a highly relativistic point electron

moving through a cold fluid background plasma and will

solve for the electric field of the wake, following the meth-

ods used in the plasma-based accelerator community.18,19

We present results for the wake and electric field on the par-

ticle for 1D, 2D, and 3D. We then consider the effect of finite

sized particles on the stopping, with an emphasis on 2D as it

is presently the most common case.

We start by considering relativistic particles with charge

qb moving near the speed of light (c) in a cold fluid plasma,

following the approach in Ref. 18. The linearized fluid equa-

tions for the background plasma are

@~v1

@t
¼ � e

me

~E; (1)

@n1

@t
¼ �n0

~r � ~v1 ; (2)

~r � ~E ¼ �4pen1 þ 4pqnb; (3)

where e is the charge of an electron, me is its mass, v is the

electron fluid velocity, E is the electric field, n is the plasma

density, the subscripts 0 and 1 indicate zeroth and first order

quantities, respectively, and the subscript b corresponds to

quantities for the relativistic particle species. We next con-

sider the response for a single beam particle moving in the z

direction with a speed vb, in which case

qnb ¼ qdð~r � ~vb tÞ ¼ qdðz� vbtÞdð~r?Þ; (4)

where d() is the Dirac delta function, q is the magnitude of

the charge on the test particle, ~r is the position vector, and

~r? is the part of the position vector perpendicular to the

direction of motion. The response to this point particle can

also be viewed as the Green’s function response of the elec-

tric field when one is calculating the response to a continuous

beam distribution. We will also use Faraday’s law

� ~r � ~E ¼ 1

c

@~B

@t
; (5)

and Ampere’s law where we have substituted for the current

~r � ~B ¼ � 4pen0

c
~v1 þ

4pqnb

c
~vb þ

1

c

@~E

@t
: (6)

We combine these equations to get

@2n1

@t2
þ x2

pn1 ¼ x2
p

q

e
nb ¼

x2
p

vb

q

e
dð~r?Þd t� z

vb

� �
; (7)

where xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=me

p
is the unperturbed plasma

frequency.

Due to causality the density perturbation in front of the

relativistically moving test particle must vanish, so the den-

sity response is

n1 ¼
xpq

vbe
dð~r?Þg t� z

vb

� �
sin xp t� z

vb

� �� �
; (8)

where g() is the Heaviside step function. To find the electric

field, we use Eqs. (1), (5), and (6) to derive a wave equation

for the electric field

� 1

c2

@2~E

@t2
þr2~E � ~r ~r � ~E ¼ k2

p
~E þ 4p

c2

@~vbqnb

@t
; (9)

where kp ¼ xp

c is the plasma wave number.

Next, we substitute from Gauss’s law (3) and assume

the test particle’s velocity remains very close to c, i.e.,

~vb ¼ cẑ, where ẑ is the unit vector in the z direction. We con-

centrate on the component of the electric field in the ẑ direc-

tion and use the fact that both Ez and qb are, therefore,

functions of (z� ct) such that @
@tþ c @

@z ¼ 0, to obtain

ðr2
? � k2

pÞEz ¼ �4pkpq
@

@z
dð~r?Þg t� z

c

� �
sin xp t� z

c

� �� �h i
:

(10)

The solution for Ez can then be written as

Ez ¼ GRð~r?Þ4pk2
pqg t� z

c

� �
cos xp t� z

c

� �� �
; (11)

where

ðr2
? � k2

pÞGRð~r?Þ ¼ dð~r?Þ: (12)

The solutions to Eq. (12) depend on the dimensionality

of the problem. In 1D, the d(r?) in Eq. (4) should be replace

by 1, r2
? vanishes, and q is in units of charge per unit area,

so that GR 1D ¼ �1=k2
p. This yields an expression for the

electric field

052703-2 May et al. Phys. Plasmas 21, 052703 (2014)
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Ez 1DðzÞ ¼ �4p��qg t� z

c

� �
cos xp t� z

c

� �� �
; (13)

where ��q is the change per unit area.

In 3D, the solution to Eq. (12) can be shown to be the

Modified Bessel Function of the Second Kind20

GR 3Dð~r?Þ ¼ �
1

2p
K0ðkpjr?jÞ; (14)

which yields the Green’s function for the electric field

behind a test charge

Ez3Dðr?;zÞ¼�2qk2
pK0ðkpr?Þg t� z

c

� �
cos xp t� z

c

� �� �
: (15)

The stopping power on a charge is the Green’s function eval-

uated at the particle. For point particles, the value of the step

function is 1/2 at the position of the particle. From Eq. (15), in

3D the electric field diverges logarithmically at the origin,

which violates the linearity condition. The stopping power

would also diverge logarithmically. Therefore, if this response

is viewed as the electric field from a real point electron then

the result cannot be valid near the origin. However, when

viewed from the stand point of a finite size particle (or beam),

what matters is the solution for Ez obtained by integrating the

Green’s function over the particle’s shape. As long as this elec-

tric field is finite then the use of linear theory can still be valid.

We next carry out this integral in detail for the 2D case and

comment on the 1D and 3D cases at the end of the section.

In 2D (slab) geometry, where r2
? ! d2

dr2
?

and dð~r?Þ ¼
dðr?Þ it is readily verified19 that the solution to Eq. (12) is

given by setting GR 2Dðr?Þ ¼ � 1
2kp

ekpr? for r?< 0 and

GR 2Dðr?Þ ¼ � 1
2kp

e�kpr? for r?> 0. Thus, the electric field is

Ez2Dðr?;zÞ¼�2pe�kpjr?jkp �qg t� z

c

� �
cos xp t� z

c

� �� �
; (16)

where �q is the charge per unit length. Unlike the 3D case,

this electric field remains finite at the origin allowing direct

analysis without specifying a particle shape. Using 1/2 for

the value of g(0), the energy loss for a point (line of charge

in 2D) particle is given by

d�2D

dt
¼ �pxp �q2; (17)

where � is the energy of the test particle. Dividing by xp �mc2,

we get

dc2D

dxpt
¼ �p

�q2

�mc2
; (18)

where c is the relativistic Lorentz factor of the test charge.

Equation (18) shows that the stopping power (distance) for a

relativistic particle in a cold plasma is (inversely) propor-

tional to the �q on the particle holding the �q= �m ratio fixed. To

derive an equation for PIC simulations, we use the fact that

�q=e ¼ n0D
2=N, where D is the cell size (we assume equal

cell sizes along the different dimensions) and N is the num-

ber of simulation macro-particles per cell, and obtain

dc2D

dxpt
¼ � 1

4

x2
p

c2

D2

N
C: (19)

Equation (19) demonstrates that for large cell sizes N must

be increased to reduce the macro-particle stopping to a

desired level. The factor C is a term that accounts for finite

size particle effects which will depend on the details of the

particle shape and smoothing used in the simulation.

Next, we consider finite size particle effects and the factor

C. These effects will reduce the stopping power of the test

particle. The use of finite size particles reduces both the elec-

tric field made by the test charge and the force from this elec-

tric field on the particle. We first discuss the reduction of the

electric field. The effect of the finite size of the particle on the

electric field is found from a convolution of the point particle

electric field with the shape factor as a function of grid size

�Ezðr?; nÞ ¼
ð1
�1

dr0?

ð1
�1

dn0Ezðr? � r0?; n� n0ÞSðr0?; n0Þ;

(20)

with n¼ (z� ct). For linear splines (area weighting) in one

dimension, the shape factor is given by

S1ðxÞ¼
1

D
1� x

D

� �
gðxÞgðD� xÞþ 1þ x

D

� �
gð�xÞgðDþ xÞ

� �
;

(21)

where in Eq. (20), x would be one of ðr0?; n0Þ and D is the cell

size in a specified direction; the full shape function is the

product of the one dimensional shape functions for each

dimension. As noted above, we consider square cells in 2D

(Dr? ¼ Dn ¼ D) but the arguments presented can be easily

extended to rectangular cells. The Fourier transform of this

shape function, which is an order 1 spline, is a sinc function

squared. Higher order spline shapes are defined as the convo-

lution of the previous order with the zeroth order shape

(nearest grid interpolation)

SnðxÞ ¼
ð1
�1

dx0S0ðx� x0ÞSn�1ðx0Þ: (22)

Therefore, for splines of order n, the Fourier transform of the

shape function is given by

SðkÞn ¼
sin

kD
2

� �

kD
2

0
BBB@

1
CCCA

nþ1

: (23)

The shape factor is dependent on the cell size and on the inter-

polation order. In addition, digital filters are also commonly

applied. A filter of particular interest used for current smooth-

ing is a triangular (1-2-1) filter applied multiple times in each

direction. A compensator2 is often used to flatten the profile in

k-space for low k. These filters take the k-space form

FðkÞn ¼ cos2n kD
2

� �
; (24)
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here n is the number passes of the triangular filter. When the

compensator is included the effective filter takes on a more

complex expression, but there is no k dependence in the de-

nominator so smoothing (including compensation) is never

as effective as using higher-order splines at reducing aliased

noise (the source of particle heating in PIC codes).

For illustrative purposes, we examine the electric field

generated by different particle shapes where the charge on

the particle is kept fixed. Figure 1 shows the magnitude of

the axial (z) component of the electric field produced on axis

(r?¼ 0) as a function of kpn by a 2D relativistic particle of fi-

nite size (square) in a plasma according to Eq. (20). In

Figure 1(a), the particle shape is a second order spline, i.e.,

n¼ 2 in Eq. (23), and the cell size is varied from a point par-

ticle, to 0.5c/xp, to 1.0c/xp, and to 2.0c/xp (blue, red, green,

and magenta curves, respectively). These curves confirm that

increasing the cell size for a fixed charge reduces the electric

field strength and smooths it out over the location of the par-

ticle. In Figure 1(b), we show that increasing the interpola-

tion order while keeping the cell size and charge on the

particle fixed also decreases the amplitude of the electric

field. We plot the electric field for linear (blue), quadratic

(magenta), cubic (green), and quartic (red) interpolation

while holding cell size fixed at 2.0c/xp. This shows that each

higher order spline corresponds to a “wider” particle.

Varying the cell size or varying the particle order both effec-

tively change the size of the particle, however, the use of

larger cells also changes the accuracy of the field solver for

how light waves propagate in vacuum. We also note that

although the macro-particle stopping effects are reduced as

the cell size is increased to values larger than a skin depth

(and Debye length), other issues such as significant modifica-

tions of the dispersion properties of both plasma and electro-

magnetic waves will become important.

Next, we turn our attention from the electric field of the

wake to the stopping power of the relativistic particles. The

stopping power is obtained from an integral of the convo-

luted electric field �Ez in Eq. (20) with the shape function

Fstopping ¼ q

ð1
�1

d~r0?

ð1
�1

dn0 �Ezð~r0? ;n0ÞSð~r0? ;n0Þ

¼ q

ð1
�1

d~r0?

ð1
�1

dn0
ð1
�1

d~r
00
?

�
ð1
�1

dn00Ezð~r0? � ~r
00
? ;n

0 � n00ÞSð~r0? ;n0ÞSð~r
00
? ;n

00Þ:

(25)

It is worth noting that the total force on the particle can also

be obtained by integrating the shape function and electric

field in k space

Fstopping ¼ q

ð1
�1

d~kS2ð~kÞEzð~kÞ: (26)

Through Eqs. (23) and (26) it can be seen how the use of pro-

gressively higher order splines (and smoothing) can reduce

the stopping force. The shape functions can be different in

each direction, but it is generally a separable function in the

each coordinate in which only the cell size varies. For sepa-

rable shape functions, it is easy to extend Eqs. (25) and (26)

to multi-dimensions. For simplicity, in what follows we

assume the cells are squares in 2D.

It is difficult to obtain analytical expressions for

Fstopping, for the particle shapes used in PIC codes, therefore

we simply plot numerical solutions to Eq. (26) (or

FIG. 1. Theoretical curves for the magnitude of the z component of the on

axis electric field of a relativistic particle moving in the z direction. (a) The

strength of the electric field is dependent on cell size with larger cell sizes

producing weaker fields. (b) The strength of the electric field is also depend-

ent on the interpolation order with higher order interpolation schemes pro-

ducing weaker fields.

FIG. 2. Reduction in stopping force due to finite-sized particles (“C” in Eq.

(19).) “Smoothing” is used in finite-difference codes like OSIRIS, and here

refers to a 4-pass (1,2,1) filter followed by a (�5,14,�5) compensator.2

“Filtering” is done directly in k-space and therefore is used in spectral codes

like PARSEC; here the filter is e
�k2D2

2 , where D is the cell size (applied to

both the particles and the fields). From the figure, it can be seen that smooth-

ing is more effective at reducing stopping than higher-order particle shapes,

and filtering is more effective than smoothing.
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equivalently Eq. (25).) Figure 2 shows the effect of varying

the spline order and current smoothing on the stopping force.

We plot the force on the particle for linear and cubic splines,

and the same using 4-pass smoothing (which we often use in

OSIRIS) and k-filtering (used in PARSEC); it is normalized

to the stopping for a point particle, and therefore this curve is

equal to the factor C for two dimensions, C2, in Eq. (19). As

stated earlier, both smoothing and higher-order interpolation

schemes reduce the macro-particle stopping. However, for

fixed charge per particle, the reduction is only significant for

large cell sizes (D> 1/kp), where important skin-depth

physics can be missed and where significant numerical dis-

persion effects can be present.2 In essence by increasing the

cell size, one is smoothing out the wake field, whose scale

length is on order of the skin depth. For example, for a cell

size of 1=2 k�1
p , without current smoothing, the stopping

power is 77% and 68% of the point-particle limit for linear

and cubic interpolation, respectively. If the cell size is

increased to 3=2 k�1
p , then these values become 37% and

21%, respectively. Including current smoothing further

reduces the value of C to 0.09 in the linear case and 0.05 in

the cubic one. We note that there are numerical limits to

both increasing cell size and increasing interpolation order

for the purpose of reducing macro-particle stopping. For

example, the use of large cells can lead to plasma waves and

light waves having negative group velocity. In

finite-difference PIC codes where numerical errors cause the

phase velocity of electromagnetic waves on the grid to be

less than the speed of light, relativistic particles can excite

numerical Cerenkov noise which is increased as the time

step is reduced below the electromagnetic Courant condition

for stability.2 In addition, since the hard stability limit for the

time step in a plasma is 2/xp (Ref. 2) this introduces a practi-

cal limit on the cell size of 2
ffiffiffi
2
p

c=xp when dealing with rela-

tivistic particles. As seen in Eq. (19), the stopping power can

be reduced by also increasing the number of particles per

cell (or effectively decreasing the particle charge). This is

the best method with respect to not modifying the physics,

but it is obviously the most computationally costly method.

We close this section with a brief discussion on macro-

particle stopping in 1D and 3D. The electric field for a infini-

tesimally thin sheet of charge was give in Eq. (13). We note

that it could also be obtained from integrating the 3D result,

Eq. (15), over a beam with a charge density that is uniform

across the beam in the transverse direction. Interestingly, the

1D result is independent of the plasma density, however, the

result is only valid if the electric field is still sufficiently small

for linear theory to be valid. This is true if the normalized field

value is small, eEz

mcxp
� 1.18,19 For a macro-particle, one needs

to integrate Eq. (13) over the shape of the particle. The energy

loss for a point (sheet of charge in 1D) particle is given by

d�1D

dt
¼ �2p��q 2c; (27)

which can be written for the Lorentz factor of the test charge as

dc1D

dxpt
¼ �2p

��q 2

��mxpc
: (28)

Taking into account the fact that ��q=e ¼ n0D=N in 1D, we

obtain the energy loss in 1D PIC simulations

dc1D

dxpt
¼ � 1

2

xp

c

D
N

C1; (29)

where C1 is the effect of the particle shape in 1D.

In 3D, the Green’s function logarithmically diverges as

j~r?j � r approaches zero. However, for a finite size particle

the divergence disappears. A detailed analysis is beyond the

scope of this work. However, in Ref. 21 the result for flat top

and Gaussian particle (beam) shapes in the transverse coordi-

nate and Gaussian shapes in the longitudinal directions were

given. Here, we summarize the results for Gaussian shaped

macro-particles for which the charge is given by
q

ð2pÞ3=2 e�ðz�ctÞ2=2r2
z e�r2=2r2

r , where rz and rr are the particle

size in the longitudinal and transverse directions, respec-

tively. For such a charge, the amplitude of the wakefield is

given in Ref. 21 as

Ez 3D ¼ �qk2
pe�k2

pr
2
z =2ek2

pr
2
r =2C 0;

k2
pr

2
r

2

� �
; (30)

where Cða; bÞ ¼
Ð1
b sa�1e�sds is the incomplete gamma

function. For symmetric macro-particles, rr¼ rz¼r, we

have simply

Ez 3D ¼ �qk2
pC 0;

k2
pr

2

2

� �
: (31)

We note that in the limit that kpr approaches zero,

Cð0; k2
pr

2

2
Þ � lnð1:12=kprÞ, and the electric field on axis

reduces to

Ez 3D ¼ �qk2
pln

1:12

kpr

� �
: (32)

This is the peak amplitude of the wake. To derive how the

electric field is distributed over the particle requires carrying

out the full integrals over the particle which is beyond the

scope of this work. However, this expression is useful for

estimating the macro-particle stopping and we will use it in

what follows.

Following the same procedure as in the 1D and 2D

cases, the energy loss in 3D is then described by

d�3D

dt
¼ �q2

x2
p

c
ln

1:12

kpr

� �
(33)

or, for the Lorentz factor of the test charge, as

dc3D

dxpt
¼ � q2

m

xp

c3
ln

1:12

kpr

� �
: (34)

If we assume cubic cell shapes with the same cell size, D, in

each direction then q=e ¼ n0D
3=N and we use the cell size

for the particle size, r, then we can estimate the macro-

particle stopping in 3D, which is given by
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dc3D

dxpt
¼ � 1

4p

x3
p

c3

D3

N
ln

1:12

kpD

� �
C3; (35)

where C3 is a factor that accounts for additional

macro-particle effects. We note that for a fixed number of

particles per cell, N, and a cell size D	 c/xp (neglecting the

exact details of the particle shape), the macro-particle stop-

ping decreases with increasing dimensionality. Therefore, it

requires a larger number of particles per cell in 1D and 2D to

control this effect when compared with 3D. We note that the

formalism that has been presented can be used to carry out

an exact and detailed analysis of the 3D case as we did for

the 2D case.

III. SINGLE PARTICLE STOPPING IN FAST IGNITION
SIMULATIONS

We can now make predictions for the stopping of relativ-

istic macro-particles in background plasmas. Here, we focus

on the stopping distance in two dimensional fast ignition rele-

vant simulations. To motivate the importance of macro-

particle stopping for fast ignition studies, let us take as exam-

ple the parameters used in integrated PIC simulations of fast

ignition6–8 aimed at modeling both laser absorption and trans-

port of fast electrons in a background plasma. We compute

the stopping power for the simulations with different resolu-

tions and numbers of particles per cell. In these simulations,

an intense laser with a 1 lm wavelength interacts with a

plasma with a nominal density around 100nc (where nc is the

critical plasma density for the laser). The number of macro-

particles per skin depth squared (PPSD2) in these simulations

varied between 6 and 24, the cell sizes varied from 0.5 to 2

k�1
p , and the particle order varied from linear to cubic. Despite

these differences, the predicted energy loss rate was similar

and it only varied in the range 0.12–0.34 MeV/lm. The simu-

lations used different plasma lengths so the single particle

energy loss across the simulation box varied between 4 and

18 MeV. For example, in the paper by Tonge et al.7 the cell

size was 0.5c/xp, with 4 particles per cell (N¼ 4) giving 16

PPSD2, and quadratic splines and 5-pass compensated

smoothing were used, leading to a stopping force of

0.011mecxp, or an energy loss rate of 0.337 MeV/lm at a den-

sity of 100nc. In each of these cases, the energy loss of a

macro-particle due to enhanced stopping is comparable or

larger than the typical fast-electron energies relevant for fast

ignition. Therefore, the enhanced stopping of macro-particles

could greatly affect the results in each case.

We verify these predictions by running simulations of

single particle stopping with the finite difference PIC code

OSIRIS.22–24 The simulation setup is as follows. The cell

size is 0.5c/xp, which in OSIRIS is also the particle size. For

the background plasma, both ions and electrons are included

with a mass ratio of 3672 (Deuterium plasma); the particle

count is 64 particles per cell, and the temperature is 100 eV.

For the beam, a single electron is accelerated to a forward

momentum of 100mec, over a time period of 300/xp to mini-

mize radiation from the particle acceleration (without allow-

ing the plasma response to affect the particle), and given a

weight (�q) equivalent to 16 particles per skin depth squared.

The box size is 25c/xp in the transverse dimension, and long

enough in the longitudinal direction that the particle does not

have time to cross the box; boundary conditions are periodic

in all directions. Linear splines are used, and we use smooth-

ing and compensation for the current. In order to study the

wake driven by a single electron, it is necessary to remove

the effects on the field caused by the thermal motion of the

background electrons, as otherwise these would dominate.

To do this we use a subtraction technique,25,26 wherein a sec-

ond simulation is run with an identically initialized back-

ground plasma but without the beam particle, and the

difference of the fields is taken to show the effects of the

beam alone.

Figure 3(a) shows the E1 obtained using the subtraction

technique; the wake can clearly be seen. In Figure 3(b), we

show a line-out of the wake field on axis from 3(a) (red),

zoomed in around the position of the particle (now taken to

be the origin), along with the theoretical prediction for the

wake, including the effect of finite spatial sampling, finite

particle size, current smoothing, and compensation (blue).

As can be seen the results are in good agreement, although

of somewhat reduced magnitude.

We also compared the energy loss observed in these

simulations to the theory presented in Sec. II. Looking at the

energy loss over a period of 500/xp, Eq. (19) predicts a Dc
of 7.8125; the factor C is calculated to be 0.70 for particles

of this shape, giving an adjusted Dc of 5.4616. In our simula-

tion, we see a Dc of 5.2448, 96% as much as is predicted by

theory; this is consistent with the slightly weaker field seen

in Fig. 3(b).

We postulated that the deviation from theory might be

due to the fact that the background plasma also is composed

of finite size particles, with a size and shape equivalent to

FIG. 3. (a) Wake formed in the E1 field by a relativistic particle traveling

along the x1 direction in a 2D PIC simulation. This wake is predicted by

wakefield theory. (b) A comparison of the lineout along x1 of the E1 field

near the relativistic particle predicted by theory (blue) and from the PIC sim-

ulation (red). The curves are in close agreement, though the simulation field

is slightly weaker.
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the beam particle. This would also have the effect of smooth-

ing out the wake and giving a weaker field. To test this hy-

pothesis, we reduced the cell and particle size but kept other

parameters the same (reducing the number of particles per

cell to keep the total particle count constant). Unfortunately,

using a standard Yee27 field solver, numerical Cerenkov

radiation becomes a dominating factor in the energy loss of

the particle as the cell size becomes smaller. For a cell size

of 1/16 kp, we find numerical Cerenkov is already contribut-

ing more to the stopping than the wakefield. We have experi-

mented with various field solvers in OSIRIS to alleviate this

issue. We have found solvers based on the work of Pukhov28

and Lehe et al.29 to both be effective at suppressing the nu-

merical Cerenkov for particles traveling along the axis (we

have not investigated numerical dispersion issues in other

directions.) For the same parameters as the previous para-

graph but a cell size of 1/16 kp the factor C in Eq. (19) is cal-

culated to be 0.96, which gives a predicted Dc of 7.515. In

OSIRIS using a Lehe solver, we observe a Dc of 7.336,

which is 98% of theory. Therefore, we conclude that the

wakes are also additionally reduced by the use of finite sized

particles in the plasma.

We have also performed a series of test particle simula-

tions with PARSEC,30 to examine the effect of background

temperature and particle energy. Recall that the theory

assumes a cold fluid plasma and the particle is highly relativ-

istic. These 2D PIC simulations use the same simulation box

and numerical parameters of the previous simulations, but

we varied the energy of the relativistic electron (>1 MeV)

and of the background plasma (100 eV–1 MeV). For back-

ground temperatures up to 10 keV and all fast electron ener-

gies examined, the energy loss is relatively insensitive to

either parameter and is �14% less than the theoretical value.

For background temperatures > 100 keV, the velocity of

background particles becomes relativistic, the assumption of

a cold background plasma does not hold and the simulation

results deviate more strongly.

We have tested N¼ 4, 16, 64, and 256 for the back-

ground plasma and the differences to the stopping of a single

particle were negligible for background temperatures below

10 keV. We therefore conclude that Eq. (19) is useful for all

initial energies above 1 MeV and for background tempera-

tures up to �10 keV.

IV. RELAXATION OF HIGH-ENERGY TAILS

We now investigate the macro-particle stopping for a

distribution of fast electrons with a high-energy tail. These

simulations are run with PARSEC and model a spatially uni-

form cold (1 keV) background plasma with a relativistic tail

distribution with a slope temperature of 2.5 MeV and with

4% of the particles in the tail. The simulations have periodic

boundaries, with a box size of 256 cells � 256 cells, a cell

size of 0.5c/xp, and N¼ 16 or 64 PPSD2. Second order parti-

cle interpolation is used with Gaussian shaped particles with

particle sizes equal to the grid size. In Figure 4, the blue

curve shows the initial energy distribution, with the red,

green, and yellow curves showing the relaxation of the distri-

bution with time, 92.75 fs apart when scaled to a background

density of 1023 cm�3. The curves show that the high-energy

particles uniformly loose energy as predicted by theory. The

predicted energy loss is 0.09 MeV/lm (0.027 MeV/fs) and

the simulations show an energy loss of 0.06 MeV/lm, which

is less than both theory and single particle simulations.

In single particle simulations, the energy loss is 86% of

theory and insensitive to background particle count; in simu-

lations with a high-energy tail the discrepancy with theory is

dependent on the PPSD2 because this affects the distribution

of particles in the tail. For simulations where we vary the

PPSD2 but keep other parameters constant, we found energy

loss of 71%, 66%, and 53% of the predicted value for 16, 64,

and 256 PPSD2, respectively. This effect is likely due to the

more even distribution of particles in the tail across cell

boundaries as N (not necessarily PPSD2) increases. For the

particles in the tail, the number of particles per cell varied

from N¼ 0.16, 0.64, and 2.56, respectively (recall that 4% of

the particles are in the tail). As the tail becomes more uni-

formly distributed in space the discrete effect of

macro-particles is decreased. In simulations relevant to fast

ignition, the electrons are accelerated by the laser in

bunches9 separated by half a laser wavelength which is com-

parable to a plasma wake wavelength. Therefore, the par-

ticles in these bunches will not interact through individual

wakes but rather through collective wakes. If the bunch dura-

tion is short compared to a skin depth the wakes will collec-

tively add leading to enhanced stopping, while if the

particles are bunched on scales much longer than the skin

depth then the stopping power will be comparable to the sin-

gle particle stopping power.

V. INTEGRATED FAST IGNITION SIMULATIONS

We will now revisit the integrated simulations using iso-

lated fast ignition targets from Tonge et al.7 In these simula-

tions, a 50 lm radius 100nc target with a 20 lm core region

is illuminated with an I¼ 8� 1020 W/cm2, k¼ 1 lm laser

FIG. 4. Relaxation of high-energy tails in a periodic simulation of a cold

background and a hot electron tail. The blue curve shows the initial energy

distribution, with the red, green, and yellow curves showing the relaxation

of the distribution with time, 92.75 fs apart when scaled to a density of

100nc. The curves show that the high-energy particles uniformly lose energy

as predicted by theory.
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with a 20 lm spot size; detailed parameters are given in

Tonge et al.7 Here, we reproduce these simulations using

cubic splines (quadratic splines were used in the original

simulations) and varying the PPSD2 while keeping all other

parameters fixed. By increasing the PPSD2 from 16 (original

value) to 100, we decrease the stopping by 6.25 times and

we observe a significant change in the dynamics of the simu-

lation due to macro-particle stopping. The stopping

decreases the energy of hot electrons while increasing the

heating of the background plasma between the laser-plasma

interface and the target core. Figure 5 shows the momentum

distribution function in the isolated target, 835 fs after the

laser strikes, at the longitudinal (x1) position 2 lm behind the

laser-plasma interface and integrated along the transverse

direction (x2) for the 16 PPSD2 or 100 PPSD2 cases. The

blue curve (16 PPSD2) is clearly wider than the red curve

(100 PPSD2) indicating the plasma is hotter in the interaction

region. Panel (b) shows the power absorbed in the target core

as a function of total laser power. From the initial heating at

400 fs up to 600 fs, the two simulations have similar power

delivered to the core, although the red curve has a bump at

450 fs which is due to higher level of refluxing off the back

of the target early in the high particle count simulation. After

600 fs the curves diverge, with the lower PPSD simulation

showing a larger heating of the core; this is due to both

energy of the electrons reaching the core being lower and

hence the stopping of fast electrons in the core being

enhanced, and to the increased heating of the background

plasma in front of the core that causes heated background

electrons to travel into the core and redeposit their absorbed

energy. This overall effect was to increase the power deliv-

ered to the core by 25% at 1.3 ps. In the lower absorption

case (higher PPSD case), the laser is still capable of deliver-

ing 10% of its power to the core.

Let us now compare the magnitude of the single particle

stopping effect to that seen by a real particle (although these

are 2D simulations, the 3D result is equivalent up to a factor

of Oð1Þ). For a 1 lm laser, 100nc¼ 1023 cm�3, the cell size

of 0.05c/x0 is �0.008 lm, giving 5� 104 electrons in a cell

volume. For N¼ 25, and taking into consideration finite par-

ticle size effects, the stopping is �1300 times stronger in the

simulation than would be seen for a physical electron. To

make the real and simulated macro-particle stopping powers

numerically equivalent at n¼ 100nc and retain the skin depth

physics (i.e., cell size 	 c/xp) we would have to increase the

particle count to N> 500 and use current smoothing and

cubic splines. This is impractical for multi-dimensional PIC

studies of relevant fast ignition scales. However, it is not im-

portant to make the macro-particle stopping power compara-

ble to the real stopping power, but rather to make it small

enough over the plasma size so that this enhanced stopping

does not change the results. On the other hand, if one is mod-

eling the heating of the core at very high densities, then since

the stopping power of the electrons is the physics process

that is most important it needs to be quantitatively correct.

This is similar to the effect of the collisions between macro

particles. If one is modeling a region of plasma for which

collisions are not important it is not important that the colli-

sion frequency is correct, rather it must be kept small enough

that the growth rates and dispersion properties of collision-

less processes are not modified.

VI. PARTICLE SPLITTING

We now discuss a scheme that can potentially overcome

this effect of macro-particle stopping in PIC simulations

associated with laser-solid interactions, fast-ignition, and rel-

ativistic shocks. We have shown that reducing the charge on

the relativistic, i.e., “beam,” electrons is an effective method

to alleviate the enhanced stopping of relativistic particles

due to their wakes. However, in the majority of the simula-

tions of interest we want to study the way particles are accel-

erated, e.g., by the laser in fast ignition scenarios or by the

shock in astrophysical plasmas, and we do not know before-

hand which particles will be accelerated (fast) and which

will be background plasma particles. Thus, in a standard PIC

simulation reducing the charge of a fast particle requires

FIG. 5. Panel (a) shows the distribution function for forward momentum

(p1) 3 lm in front of the target core at 835 fs for 16PPSD2 and 100 PPSD2

simulations, respectively. These show that macro-particle stopping results in

more heating of the plasma. Panel (b) compares the power delivered to the

core for the 16PPSD2 and 100 PPSD2 simulations. These show that greater

macro-particle stopping also results in lower energy electrons carrying

energy to the target core.
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reducing the initial charge of all simulation particles, leading

to a prohibitive particle count.

In many of these scenarios, the super-thermal particles

which are stopped by macro-particle effects are only a small

percentage of the total particle count—although at the same

time these particles can have a profound effect on plasma dy-

namics. Under these conditions, an algorithm that splits the

relativistic electrons into macro-particle electrons with less

charge might be effective. We have implemented and experi-

mented with a splitting algorithm that works as follows. For

a given simulation, we define the minimum particle energy

above which macro-particle stopping will become important

and the maximum particle charge that high-energy particles

should have for accurate description of their stopping based

on the theory presented in Sec. II. In the simplest algorithm

these can be fixed values, for instance associated with the

initial laser and plasma conditions. It would also be possible

to make them dynamic values that depend on for instance

the local background plasma conditions that vary due to den-

sity gradients or plasma steepening. The simulation is initial-

ized in the standard way, however, after each n time steps (in

the future the value of n could change statically or dynami-

cally as the simulation progresses), we calculate the energy

and charge of each particle and compare it to the minimum

energy and maximum charge defined. If they are both larger,

then we reduce its charge and mass by a factor of two and

then duplicate the particle. This process is repeated until the

particle charge is smaller than the defined value. Thus, we

effectively increase the particle count for the high-energy

part of the distribution function. It is important to note that

in most cases, because of the wide difference between the

background thermal and “fast” particle energies, the effi-

ciency of the splitting is relatively insensitive to the exact

energies chosen as the splitting points. Also, since the num-

ber of fast particles is significantly smaller than the number

of background particles, the computational overhead of split-

ting is not dramatic. We also have found the results are rela-

tively insensitive to the choice of n, provided that the energy

loss during n time steps is still negligible.

It is important to ensure that the duplicated particles can

spatially separate from each other. If the duplicated particles

have the exact same position and momentum then they will

never move apart and their wakes will add coherently and

the stopping power will remain unchanged. Furthermore, the

use of finite size particles means that particles that start off

close together within a cell will move apart slowly. Several

schemes can be thought of to separate the duplicated par-

ticles, such as randomly shifting the position of the new par-

ticle within the same cell, slightly shifting the momentum of

the two particles in a way that conserves the total momentum

(this can introduce a small divergence), or simply relying on

a collisional operator, which is already used in many of the

scenarios of interest, to naturally separate the two particles

in phase space. We have experimented both with the mo-

mentum shifting scheme and with the use of a Monte-Carlo

binary Coulomb collisions operator,14,31–33 with overall sat-

isfactory results.

We next show results using the OSIRIS Coulomb colli-

sions module33 for electron-ion collisions. We initialize a 2D

plasma in a box 1 lm wide and periodic in the transverse

direction, and 200 lm long in the longitudinal direction. The

box is filled with a 100nc plasma, except for a thin (2 lm)

vacuum layer to the left which isolates the plasma from this

wall; a laser with I¼ 5� 1019 W/cm2 (normalized vector

potential a0¼ 6) and k¼ 1 lm is incident from this direction.

In order to avoid using a larger simulation box to capture the

self-consistent plasma expansion due to laser heating of the

plasma surface, we used infinitely heavy ions. We use a lin-

ear density ramp from 0 to 100nc in the first micron of

plasma. We use cells with a size of 0.5c/xp, and either 16 or

512 particles per cell, corresponding to 64 or 2048 PPSD2,

respectively; the time step satisfies the Courant condition

almost exactly, to reduce numerical Cerenkov. We use third

order particle shapes, with 4-pass current smoothing with a

compensator.

In Figure 6, we show the particle count and forward

heat-flux of a typical laser-solid simulation as a function of

kinetic energy on a logarithmic scale for N¼ 512 (note that

particle count is not corrected for bin size). The first thing to

notice is that the majority of the energy flux is being carried

by particles with c� 2–10, demonstrating that the energy is

being carried by relativistic electrons and that macro-particle

stopping needs to be considered. It is also clear that the peak

of the heat-flux and the peak of the particle count are sepa-

rated by two orders of magnitude indicating that almost all

of the forward heat flux is carried by only a few percent of

the particles. This illustrates that if we decreased the particle

charge and increased the particle count of only a small

region of phase space we could greatly minimize the impor-

tance of macro-particle stopping without significant compu-

tational expense. To illustrate the effectiveness of the

splitting algorithm, in Figure 7 we show the total forward

heat flux as a function of longitudinal position for the

N¼ 512 case as well as a N¼ 16 case with no splitting and a

N¼ 16 case with five particle splits (for final particle size

equivalent to N¼ 16� 25¼ 512). Figure 7(b) clearly shows

significant loss of beam energy going into the plasma for the

N¼ 16 case as compared to the N¼ 512 case. In Fig. 7(b),

the heatflux essentially vanishes by x1¼ 100 lm. Taking the

peak beam particle energy as 2a0mec
2,9 we find for these

FIG. 6. Particle count vs. the logarithm of the kinetic energy (red), and the

same data weighting each particle by the heatflux it carries in the x1 direc-

tion (blue). Arbitrary units, both independently normalized to a peak of 1.
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parameters a stopping distance of 97.5 lm, consistent with

these results. For the N¼ 512 case (Fig. 7(a)), we predict a

decrease of the particle Lorentz factor, c, of 0.375 over the

same distance, which we estimate to be 3%–6% of beam par-

ticle energy. The larger apparent loss of heat flux moving

forward in the case of N¼ 512 is due to a number of non-ma-

cro-particle effects, including the increase of laser absorption

as a function of time combined with the time-of-flight of

electrons, the fact that not all heat flux is being carried by

highly relativistic particles, and the effects of the wakes of at

least partially coherent particle bunches. We note that colli-

sional stopping, however, is not a significant factor in this re-

gime. More importantly, the results using N¼ 16 but with 5

binary particle splits (Fig. 7(c)) are identical to the N¼ 512

simulation. Figure 7(d) shows the comparison of the heat

flux carried in the forward direction as a function of the lon-

gitudinal positions for the different cases. Again, it is possi-

ble to observe that by splitting the high-energy particles the

macro-particle stopping is controlled. For the example

shown, using the splitting algorithm leads to only a factor of

two increase in the computational time, giving a total com-

putational savings factor of 16 to reach the same accuracy in

terms of macro-particle stopping. This illustrates the effi-

ciency of this algorithm and its usefulness for carrying out

multi-dimensional studies of large plasma volumes. We

should also note that using this splitting algorithm can bring

important statistical advantages when computing collisions

between fast and background particles in many of the scenar-

ios of interest. We note that that this algorithm can lead to

load balancing issues. OSIRIS does have a dynamic load bal-

ancing capability and we will experiment with this as part of

future work.

VII. SUMMARY

In this paper, we have shown that relativistic particles

moving in a cold background plasma in PIC simulations are

susceptible to enhanced stopping due the use of macro-

particles. The stopping scales as q2/m so that particles with

large charge but with the correct charge to mass ratio will

stop more rapidly. This stopping is due to the wakefield cre-

ated by relativistic particles and it can be predicted using

wakefield theory developed for studying plasma wakefield

acceleration. We reviewed the derivation of the wakefields

created by a point particle moving near the speed of light for

one dimension (charge sheet), two dimensions (line of

charge), and three dimensions. We used this wakefield

(Green’s function) to derive the wakefields created by finite

size particles (such as those used in PIC simulations), and

also calculated the force on a particle from its own wakefield

to get the stopping power. We also studied how the stopping

depends on the cell size, particle shape, and dimensionality.

The enhanced stopping is mitigated through the use of larger

cells, higher order particle shapes, and current smoothing as

FIG. 7. Particle count as a function of c and forward position for (a) 2048 PPSD2, (b) 64 PPSD2, and (c) 64 PPSD2 but with up to 5 particle splits for superther-

mal particles. (d) Forward heatflux as a function of forward position for 2048 PPSD2 (red curve), 64 PPSD2 (magenta), 64 PPSD2 w/5 splits (blue), and 64

PPSD2 w/7 splits (pink). All data in arbitrary units but with equivalent normalization.
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well as with a decrease in the macro-particle charge. We

found good agreement between the theory and results against

PIC simulation from a finite difference PIC code (OSIRIS)

and a spectral PIC code (PARSEC). We also studied how a

distribution of electrons containing a hot tail relaxes and

showed that the macro-particle stopping process dominates

how the tail relaxes. We also reexamined previous results in

intense laser-solid interactions, such as the isolated target

simulations in Ref. 7 and found that indeed this effect modi-

fied the physics. When the charge per particle was reduced

by a factor of 6.25 the amount of laser energy being depos-

ited in the core decreased by only 25% from the values

quoted in Tonge et al.7 Our expressions also predict that sim-

ulations done by other groups will also be impacted by this

effect.6,8 Our simulations show that increasing the cell (parti-

cle) size can reduce this effect. However, for large cells the

dispersion relation of the laser near the overdense plasma is

also modified, so this is not necessarily a solution. We also

describe a possible solution which is a particle splitting algo-

rithm that can reduce this effect by decreasing the charge of

high-energy particles as the simulation evolves. We found

that this algorithm can successfully control the

macro-particle stopping in PIC simulations of high-energy

density scenarios in a computationally efficient way. This

work was motivated by issues in fast ignition simulations,

but it is also of relevance to simulating relativistic flows in

astrophysics such as in collisionless shocks.34
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