398 research outputs found

    Ion-exchange equilibria between (Mn, Co)O solid solution and (Mn, Co) Cr<SUB>2</SUB>O<SUB>4</SUB> and (Mn, Co) Al<SUB>2</SUB>O<SUB>4</SUB> spinel solid solutions at 1100&#176;C

    Get PDF
    The compositions of the (Mn,Co)O solid solution with rock salt structure in equilibrium with (Mn,Co)Cr2O4 and (Mn,Co)Al2O4 spinel solid solutions have been determined by X-ray diffraction measurements at 1100&#176; C and an oxygen partial pressure of 10-10 atm. The ion exchange equilibria are quantitatively analysed, using values for activities in the (Mn,Co)O solid solution available in the literature, in order to obtain activities in the spinel solid solutions. The MnAl2O4-CoAl2O4 solid solution exhibits negative deviations from Raoult's law, consistent with the estimated cation disorder in the solid solution, while the MnCr2O4-CoCr2O4 solid solution shows slightly positive deviations. The difference in the Gibbs free energy of formation of the two pure chromites and aluminates derived from the results of this study are in good agreement with recent results obtained from solid oxide galvanic cells and gas-equilibrium techniques

    Solubility and activity of oxygen in liquid germanium and germanium-copper alloys

    Get PDF
    The solubility of oxygen in liquid germanium in the temperature range 1233 to 1397 K, and in liquid germanium-copper alloys at 1373 K, in equilibrium with GeO2 has been measured by the phase equilibration technique. The solubility of oxygen in pure germanium is given by the relation 6470 log(at, pct 0) =-6470/T + 4.24 (&#177;0.07). The standard free energy of solution of oxygen in liquid germanium is calculated from the saturation solubility, and recently measured values for the free energy of formation of GeO2, assuming that oxygen obeys Sievert's law up to the saturation limit. For the reaction, &#189;O2(g)&#8594;OGe &#916;G &#176; =-39,000 + 3.21 T ( &#177;500) ca1 = -163,200 + 13.43 T (&#177;2100) J. where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct), in the limit, as concentration approaches zero. The effect of copper on the activity of oxygen dissolved in liquid germanium is found to be in good agreement with that predicted by a quasichemical model in which each oxygen was assumed to be bonded to four metal atoms and the nearest neighbor metal atoms to an oxygen atom are assumed to lose approximately half of their metallic bonds

    Activities in the spinel solid solution, phase equilibria and thermodynamic properties of ternary phases in the system Cu-Fe-0

    Get PDF
    A review of the structural and thermodynamic information and phase equilibria in the Cu-Fe-O system suggested that a consistent, quantitative description of the system is hampered by lack of data on activities in the spinel solid solution CuFe2O4-Fe3O4. Therefore the activity of Fe3O4 in this solid solution is derived from measurements of the oxygen potentials established at 1000&#176;C by mixtures containing Fe2O3 and spinel solid solutions of known composition. The oxygen pressures were measured manometrically for solid solutions rich in CuFe2O4, while for Fe3O4-rich compositions the oxygen potentials were obtained by an emf technique. The activities show significant negative deviations from Raoult's law. The compositions of the spinel solid solutions in equilibrium with CuO + CuFeO2 and Cu + CuFeO2 were obtained from chemical analysis of the solid solution after magnetic separation. The oxygen potential of the three-phase mixture Cu + CuFeO2 + Fe3O4(spinel s.s.) was determined by a solid oxide galvanic cell. From these measurements a complete phase diagram and consistent thermodynamic data on the ternary condensed phases, CuFeO2 and CuFeO2O4, were obtained. An analysis of the free energy of mixing of the spinel solid solution furnished information on the distribution of cations and their valencies between the tetrahedral and octahedral sites of the spinel lattice, which is consistent with X-ray diffraction, magnetic and Seebeck coefficient measurements

    Micro droplet formation towards continuous nanoparticles synthesis

    Get PDF
    In this paper, micro droplets are generated in a microfluidic focusing contactor and then they move sequentially in a free-flowing mode (no wall contact). For this purpose, two different micro-flow glass devices (hydrophobic and hydrophilic) were used. During the study, the influence of the flow rate of the water phase and the oil phase on the droplet size and size distribution was investigated. Moreover, the influence of the oil phase viscosity on the droplet size was analyzed. It was found that the size and size distribution of the droplets can be controlled simply by the aqueous phase flow rate. Additionally, 2D simulations to determine the droplet size were performed and compared with the experiment.Marek Wojnicki, Magdalena Luty-BƂocho, Volker Hessel, Edit Csapó, Ditta Ungor and Krzysztof Fitzne

    Universal finite-size scaling for percolation theory in high dimensions

    Get PDF
    We present a unifying, consistent, finite-size-scaling picture for percolation theory bringing it into the framework of a general, renormalization-group-based, scaling scheme for systems above their upper critical dimensions dcd_c. Behaviour at the critical point is non-universal in d>dc=6d>d_c=6 dimensions. Proliferation of the largest clusters, with fractal dimension 44, is associated with the breakdown of hyperscaling there when free boundary conditions are used. But when the boundary conditions are periodic, the maximal clusters have dimension D=2d/3D=2d/3, and obey random-graph asymptotics. Universality is instead manifest at the pseudocritical point, where the failure of hyperscaling in its traditional form is universally associated with random-graph-type asymptotics for critical cluster sizes, independent of boundary conditions.Comment: Revised version, 26 pages, no figure

    Orbital redistribution in molecular nanostructures mediated by metal-organic bonds

    Get PDF
    Dicyanovinyl-quinquethiophene (DCV5T-Me) is a prototype conjugated oligomer for highly efficient organic solar cells. This class of oligothiophenes are built up by an electron-rich donor (D) backbone and terminal electron-deficient acceptor (A) moieties. Here, we investigated its structural and electronic properties when it is adsorbed on a Au(111) surface using low temperature scanning tunneling microscopy/spectroscopy (STM/STS) and atomic force microscopy (AFM). We find that DCV5T-Me self-assembles in extended chains, stabilized by intercalated Au atoms. The effect of metal-ligand hybridization with Au adatoms causes an energetic downshift of the DCV5T-Me lowest unoccupied molecular orbital (LUMO) with respect to the uncoordinated molecules on the surface. The asymmetric coordination of a gold atom to only one molecular end group leads to an asymmetric localization of the LUMO and LUMO+1 states at opposite sides. Using model density functional theory (DFT) calculations, we explain such orbital reshaping as a consequence of linear combinations of the original LUMO and LUMO+1 orbitals, mixed by the attachment of a bridging Au adatom. Our study shows that the alignment of molecular orbitals and their distribution within individual molecules can be modified by contacting them to metal atoms in specific sites

    Formation of gutingimycin: analytical investigation of trioxacarcin A-mediated alkylation of dsDNA

    Get PDF
    Formation and fragmentation of recognition complexes between trioxacarcin A and various DNA sequences were examined by temperature-dependent UV and CD spectroscopy, HPLC analysis, and ESI mass spectrometry with regard to reaction conditions, intermediates, products, mechanism, and sequence specificity. Cleavage of the trioxacarcin–DNA complexes provided the natural product gutingimycin by guanine abstraction. The resulting DNA with an abasic site was further cleaved into a DNA fragment with a furanyl unit at the 3â€Č-end and an oligonucleotide with a phosphorylated 5â€Č-end
    • 

    corecore