208 research outputs found
Re-engineering Drug Discovery and Development
The rate of new drug approvals in the US has remained essentially constant since 1950, while the costs of drug development have soared. Many commentators question the sustainability of the current model of drug development, in which large pharmaceutical companies incur markedly escalating costs to deliver the same number of products to market. This Issue Brief summarizes the problem, describes ongoing governmental efforts to influence the process, and suggests changes in regulatory science and translational medicine that may promote more successful development of safe and effective therapeutics
Induction of prostacyclin receptor expression in human erythroleukemia cells
AbstractWe have identified both high-affinity (KD = 36Âą3 nM) and low-affinity (KD = 2.1Âą0.8 ÎźM) prostacyclin (PGI2)-receptor sites on human erythroleukemia (HEL) cells using the radiolabelled prostacyclin analogue, [3H]iloprost. The addition of the phorbol ester, TPA, to the culture medium caused a 5â10-fold increase in the number of both the low- and the high-affinity sites, without any change in their affinity constants. Iloprost stimulated HEL cell membrane adenylate cyclase activity 5-fold. This stimulation was potentiated in the presence of GTP, indicating a conventional PGI2 receptor-Gs-adenylate cyclase system. HEL cells represent a source of prostacyclin receptor mRNA which may be of value in expression cloning of this receptor
Pulmonary Embolism in a Woman Taking Oral Contraceptives and Valdecoxib
A 25-y-old woman, who had been on an oral contraceptive pill for 3 years, presented with pulmonary embolism. One month prior to presentation she had been started on valdecoxib for neck pain
Local Amplification of Platelet Function by 8-Epi Prostaglandin F2Îą Is Not Mediated by Thromboxane Receptor Isoforms
8-epi-Prostaglandin (PG) F2alpha may be formed by cyclooxygenases 1 and 2 or by a free radical catalyzed process as an isoprostane. Concentrations of 8-epi-PGF2alpha in the range 1 nM to 1 microM induce a dose-dependent increase in platelet shape change, in calcium release from intracellular stores [Ca2+]iand in inositol phosphates; it also causes irreversible platelet aggregation, dependent on thromboxane generation, when incubated with subthreshold concentrations of ADP, thrombin, collagen, and arachidonic acid. Much higher concentrations of 8-epi-PGF2alpha (10-20 microM) alone induce weak, reversible aggregation. Although these effects are prevented by pharmacological thromboxane receptor antagonists, they are unlikely to be mediated by thromboxane receptors. Thus, 8-epi-PGF2alpha does not compete for binding at the stably expressed placental or endothelial isoforms of the thromboxane receptor or for binding of thromboxane ligands to human platelets. Furthermore, the response to 8-epi PGF2alpha exhibits structural specificity versus 8-epi PGF3alpha and PGF2alpha. Concentrations in the range that evoke its effects on platelets do not desensitize the aggregation response stimulated by thromboxane or PGH2 analogs. Unlike primary prostaglandins, which are rapidly metabolized to inactive products, 8-epi PGF2alpha circulates in plasma. However, the systemic concentrations found in healthy volunteers (median 48 pmol/liter) and in patients with hepatic cirrhosis (median 147 pmol/liter), a syndrome of oxidant stress in vivo, fall well below those which modulate platelet function. 8-Epi PGF2alpha may amplify the response to platelet agonists in syndromes where oxidant stress and platelet activation coincide. Despite blockade by thromboxane antagonists, 8-epi PGF2alpha does not activate either of the thromboxane receptor isoforms described in platelets. Activation of a distinct receptor would be consistent with the enzymatic formation of 8-epi PGF2alpha by cyclooxygenases. However, incidental activation of such a receptor by systemic concentrations of 8-epi PGF2alpha is unlikely to occur, even in syndromes of excessive free radical generation in vivo
Platelet-Activating Factor-Induced Reduction in Contact Hypersensitivity Responses Is Mediated by Mast Cells via Cyclooxygenase-2-Dependent Mechanisms
Platelet-activating factor (PAF) stimulates numerous cell types via activation of the G protein-coupled PAF receptor (PAFR). PAFR activation not only induces acute proinflammatory responses, but it also induces delayed systemic immunosuppressive effects by modulating host immunity. Although enzymatic synthesis and degradation of PAF are tightly regulated, oxidative stressors, such as UVB, chemotherapy, and cigarette smoke, can generate PAF and PAF-like molecules in an unregulated fashion via the oxidation of membrane phospholipids. Recent studies have demonstrated the relevance of the mast cell (MC) PAFR in PAFR-induced systemic immunosuppression. The current study was designed to determine the exact mechanisms and mediators involved in MC PAFR-mediated systemic immunosuppression. By using a contact hypersensitivity model, the MC PAFR was not only found to be necessary, but also sufficient to mediate the immunosuppressive effects of systemic PAF. Furthermore, activation of the MC PAFR induces MC-derived histamine and PGE2 release. Importantly, PAFR-mediated systemic immunosuppression was defective in mice that lacked MCs, or in MC-deficient mice transplanted with histidine decarboxylase- or cyclooxygenase-2-deficient MCs. Lastly, it was found that PGs could modulate MC migration to draining lymph nodes. These results support the hypothesis that MC PAFR activation promotes the immunosuppressive effects of PAF in part through histamine- and PGE2-dependent mechanisms
Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration
Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator-like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration
Regulation of amyloid-β dynamics and pathology by the circadian clock
Nighttime restlessness and daytime drowsiness are common and early symptoms of Alzheimer\u27s Disease (AD). This symptomology implicates dysfunctional biological timing, yet the role of the circadian system in AD pathogenesis is unknown. To evaluate the role of the circadian clock in amyloid-β (Aβ) dynamics and pathology, we used a mouse model of β-amyloidosis and disrupted circadian clock function either globally or locally in the brain via targeted deletion of the core clock gen
Traditional Nonsteroidal Anti-Inflammatory Drugs and Postmenopausal Hormone Therapy: A DrugâDrug Interaction?
It is controversial whether estrogens confer cardioprotection. This study suggests that even should such a benefit exist, COX inhibitors may undermine cardioprotective effects of hormone therapy
Dietary Îą-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation
Aims Epidemiological studies report an inverse association between plant-derived dietary Îą-linolenic acid (ALA) and cardiovascular events. However, little is known about the mechanism of this protection. We assessed the cellular and molecular mechanisms of dietary ALA (flaxseed) on atherosclerosis in a mouse model. Methods and results Eight-week-old male apolipoprotein E knockout (ApoEâ/â) mice were fed a 0.21 % (w/w) cholesterol diet for 16 weeks containing either a high ALA [7.3 % (w/w); n = 10] or low ALA content [0.03 % (w/w); n = 10]. Bioavailability, chain elongation, and fatty acid metabolism were measured by gas chromatography of tissue lysates and urine. Plaques were assessed using immunohistochemistry. T cell proliferation was investigated in primary murine CD3-positive lymphocytes. T cell differentiation and activation was assessed by expression analyses of interferon-Îł, interleukin-4, and tumour necrosis factor Îą (TNFÎą) using quantitative PCR and ELISA. Dietary ALA increased aortic tissue levels of ALA as well as of the nâ3 long chain fatty acids (LC nâ3 FA) eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid. The high ALA diet reduced plaque area by 50% and decreased plaque T cell content as well as expression of vascular cell adhesion molecule-1 and TNFÎą. Both dietary ALA and direct ALA exposure restricted T cell proliferation, differentiation, and inflammatory activity. Dietary ALA shifted prostaglandin and isoprostane formation towards 3-series compounds, potentially contributing to the atheroprotective effects of ALA. Conclusion Dietary ALA diminishes experimental atherogenesis and restricts T cell-driven inflammation, thus providing the proof-of-principle that plant-derived ALA may provide a valuable alternative to marine LC nâ3 F
Academia Europaea position paper on translational medicine: the cycle model for translating scientific results into community benefits
ntroduction: Translational science has gained prominence in medicine, but there is still much work to be done before scientific results are used optimally and incorporated into everyday health practice. As the main focus is still on generating new scientific data with financial resources primarily available for that purpose, other activities that are necessary in the transition from research to community benefit are considered less needy. The European Statistical Office of the European Commission has recently reported that 1.7 million people under 75 years of age died in Europe in 2016, with around 1.2 million of those deaths being avoidable through effective primary prevention and public health intervention. Therefore, Academia Europaea, one of the five Pan-European networks that form SAPEA (Science Advice for Policy by European Academies), a key element of the European Commissionâs Scientific Advice Mechanism (SAM), has launched a project to develop a model to facilitate and accelerate the utilisation of scientific knowledge for public and community benefit. Methods: During the process, leaders in the field, including prominent basic and clinical researchers, editors-in-chief of high-impact journals publishing translational research articles, translational medicine (TM) centre leaders, media representatives, academics and university leaders, developed the TM cycle, a new model that we believe could significantly advance the development of TM. Results: This model focuses equally on the acquisition of new scientific results healthcare, understandable and digestible summation of results, and their communication to all participants. We have also renewed the definition in TM, identified challenges and recommended solutions. Conclusion: The authors, including senior officers of Academia Europaea, produced this document to serve as a basis for revising thinking on TM with the end result of enabling more efficient and cost-effective healthcar
- âŚ