183 research outputs found

    Status of the software development for the FAIR accelerator control system

    Get PDF

    Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    Get PDF
    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient\u27s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. © 2010 Institute of Physics and Engineering in Medicine

    On the Need of Analog Signals and Systems for Digital-Twin Representations

    Full text link
    We consider the task of converting different digital descriptions of analog bandlimited signals and systems into each other, with a rigorous application of mathematical computability theory. Albeit very fundamental, the problem appears in the scope of digital twinning, an emerging concept in the field of digital processing of analog information that is regularly mentioned as one of the key enablers for next-generation cyber-physical systems and their areas of application. In this context, we prove that essential quantities such as the peak-to-average power ratio and the bounded-input/bounded-output norm, which determine the behavior of the real-world analog system, cannot generally be determined from the system's digital twin, depending on which of the above-mentioned descriptions is chosen. As a main result, we characterize the algorithmic strength of Shannon's sampling type representation as digital twin implementation and also introduce a new digital twin implementation of analog signals and systems. We show there exist two digital descriptions, both of which uniquely characterize a certain analog system, such that one description can be algorithmically converted into the other, but not vice versa

    On the effectiveness of recoding-based repair in network coded distributed storage

    Get PDF

    Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry

    Get PDF
    Abstract: Quantum sensors based on light pulse atom interferometers allow for measurements of inertial and electromagnetic forces such as the accurate determination of fundamental constants as the fine structure constant or testing foundational laws of modern physics as the equivalence principle. These schemes unfold their full performance when large interrogation times and/or large momentum transfer can be implemented. In this article, we demonstrate how interferometry can benefit from the use of Bose–Einstein condensed sources when the state of the art is challenged. We contrast systematic and statistical effects induced by Bose–Einstein condensed sources with thermal sources in three exemplary science cases of Earth- and space-based sensors. Graphic abstract: [Figure not available: see fulltext.] © 2021, The Author(s)

    Topodiagnostic implications of hemiataxia: An MRI-based brainstem mapping analysis

    Get PDF
    The topodiagnostic implications of hemiataxia following lesions of the human brainstem are only incompletely understood. We performed a voxel-based statistical analysis of lesions documented on standardised MRI in 49 prospectively recruited patients with acute hemiataxia due to isolated unilateral brainstem infarction. For statistical analysis individual MRI lesions were normalised and imported in a three-dimensional voxel-based anatomical model of the human brainstem. Statistical analysis revealed hemiataxia to be associated with lesions of three distinct brainstem areas. The strongest correlation referred to ipsilateral rostral and dorsolateral medullary infarcts affecting the inferior cerebellar peduncle, and the dorsal and ventral spinocerebellar tracts. Secondly, lesions of the ventral pontine base resulted in contralateral limb ataxia, especially when ataxia was accompanied by motor hemiparesis. In patients with bilateral hemiataxia, lesions were located in a paramedian region between the upper pons and lower midbrain, involving the decussation of dentato-rubro-thalamic tracts. We conclude that ataxia following brainstem infarction may reflect three different pathophysiological mechanisms. (1) Ipsilateral hemiataxia following dorsolateral medullary infarctions results from a lesion of the dorsal spinocerebellar tract and the inferior cerebellar peduncle conveying afferent information from the ipsilateral arm and leg. (2) Pontine lesions cause contralateral and not bilateral ataxia presumably due to major damage to the descending corticopontine projections and pontine base nuclei, while already crossed pontocerebellar fibres are not completely interrupted. (3) Finally, bilateral ataxia probably reflects a lesion of cerebellar outflow on a central, rostral pontomesencephalic level. © 2007 Elsevier Inc. All rights reserved

    Evidence for systematic autopsies in COVID-19 positive deceased: Case report of the first German investigated COVID-19 death

    Get PDF
    Forensic medicine and pathology involve specific health risks, whereby health workers are dealing with microorganisms, cells or parasites, which are referred to as biological agents. Biological agents are divided into four categories according to § 3 of the Biological Agents Ordinance. The newly identified coronavirus, severe acute respiratory syndrome, coronavirus 2 (SARS-CoV-2) that has spread rapidly around the world is placed into category 3 of the Biological Agents Ordinance, meaning pathogens that can cause serious illnesses in humans and may pose a risk to workers. The Robert Koch Institute, the German government's central scientific institution in the field of biomedicine issued the announcement, that aerosol-producing measures (including autopsies) of SARS-CoV‑2 infected bodies should be avoided, despite the fact that autopsies are an important source of understanding the pathomorphological course of new diseases. The first German case of death due to a proven SARS-CoV‑2 infection is presented with global multifocal reticular consolidation in the post-mortem computed tomography (CT) scan, a macroscopic and microscopic viral pneumonia and viral RNA of SARS-CoV‑2 in pharyngeal mucosa and lung tissue

    Novel precoded relay-assisted algorithm for cellular systems

    Get PDF
    Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC

    Novel precoded relay-assisted algorithm for cellular systems

    Get PDF
    Cooperative schemes are promising solutions for cellular wireless systems to improve system fairness, extend coverage and increase capacity. The use of relays is of significant interest to allow radio access in situations where a direct path is not available or has poor quality. A data precoded relay-assisted scheme is proposed for a system cooperating with 2 relays, each equipped with either a single antenna or 2-antenna array. However, because of the half-duplex constraint at the relays, relaying-assisted transmission would require the use of a higher order constellation than in the case when a continuous link is available from the BS to the UT. This would imply a penalty in the power efficiency. The simple precoding scheme proposed exploits the relation between QPSK and 16-QAM, by alternately transmitting through the 2 relays, achieving full diversity, while significantly reducing power penalty. Analysis of the pairwise error probability of the proposed algorithm with a single antenna in each relay is derived and confirmed with numerical results. We show the performance improvements of the precoded scheme, relatively to equivalent distributed SFBC scheme employing 16-QAM, for several channel quality scenarios. Copyright © 2010 Sara Teodoro, et al.European project CODIVPortuguese project CADWINPortuguese project AGILEFC
    corecore