83 research outputs found

    On Generating Combilex Pronunciations via Morphological Analysis

    Get PDF
    Combilex is a high-quality lexicon that has been developed specifically for speech technology purposes and recently released by CSTR. Combilex benefits from many advanced features. This paper explores one of these: the ability to generate fully-specified transcriptions for morphologically derived words automatically. This functionality was originally implemented to encode the pronunciations of derived words in terms of their constituent morphemes, thus accelerating lexicon development and ensuring a high level of consistency. In this paper, we propose this method of modelling pronunciations can be exploited further by combining it with a morphological parser, thus yielding a method to generate full transcriptions for unknown derived words. Not only could this accelerate adding new derived words to Combilex, but it could also serve as an alternative to conventional letter-to-sound rules. This paper presents preliminary work indicating this is a promising direction

    Identification, Molecular Characterization, and Biology of a Novel Quadrivirus Infecting the Phytopathogenic Fungus Leptosphaeria biglobosa.

    Get PDF
    Here we report the molecular characterisation of a novel dsRNA virus isolated from the filamentous, plant pathogenic fungus Leptosphaeria biglobosa and known to cause significant alterations to fungal pigmentation and growth and to result in hypervirulence, as illustrated by comparisons between virus-infected and-cured isogenic fungal strains. The virus forms isometric particles approximately 40–45 nm in diameter and has a quadripartite dsRNA genome structure with size ranges of 4.9 to 4 kbp, each possessing a single ORF. Sequence analysis of the putative proteins encoded by dsRNAs 1–4, termed P1–P4, respectively, revealed modest similarities to the amino acid sequences of equivalent proteins predicted from the nucleotide sequences of known and suspected members of the family Quadriviridae and for that reason the virus was nominated Leptosphaeria biglobosa quadrivirus-1 (LbQV-1). Sequence and phylogenetic analysis using the P3 sequence, which encodes an RdRP, revealed that LbQV-1 was most closely related to known and suspected quadriviruses and monopartite totiviruses rather than other quadripartite mycoviruses including chrysoviruses and alternaviruses. Of the remaining encoded proteins, LbQV-1 P2 and P4 are structural proteins but the function of P1 is unknown. We propose that LbQV-1 is a novel member of the family Quadriviridae.Peer reviewe

    Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change

    Get PDF
    University of Aberdeen School of Biological Sciences provided funds to support this study in the form of a MSc project allowance to G.M. and a start-up grant to L.T.L. R.N.F.’s salary is funded by a UK Natural Environment Research Council (NERC) PhD-ship awarded to the University of Aberdeen.Peer reviewedPostprin

    Evolving social dynamics prime thermal tolerance during a poleward range shift

    Get PDF
    Peer reviewedPostprin

    Spot-on: Safe Fuel/Air Compression

    Get PDF
    The emission of fuel vapors into the atmosphere from underground storage tanks at filling stations is a common occurrence in many parts the world. The conditions of the vapor in the tanks vary significantly over a 24 hour period such that evaporation and excess air ingestion during the refueling process can cause tank over pressurization and subsequent emissions. At other times during a 24 hour cycle, pressures can fall below atmospheric pressure. The state of California has recognized this emissions problem and has enacted regulations to address it. Due to these low-emission environmental requirements in California, solutions must be implemented that do not entail release of these vapors into the atmosphere. One solution requires that the vapors fill a balloon during the appropriate times. However, the size of the balloon at typical inflation rates requires a significant amount of physical space (approximately 1000-2000 liters), which may not necessarily be available at filling stations in urban areas. Veeder-Root has a patent pending for a system to compress the vapors that are released to a 10:1 ratio, store this compressed vapor in a small storage tank, and then return the vapors to the original underground fuel tank when the conditions are thermodynamically appropriate (see Figure 1 for the schematic representation of this system). The limitation of the compressor, however, is that the compression phase must take place below the ignition temperature of the vapor. For a 10:1 compression ratio, however, the adiabatic temperature rise of a vapor would be above the ignition temperature. Mathematical modeling is necessary here to estimate the performance of the compressor, and to suggest paths in design for improvement. This report starts with a mathematical formulation of an ideal compressor, and uses the anticipated geometry of the compressor to state a simplified set of partial differential equations. The adiabatic case is then considered, assuming that the temporary storage tank is kept at a constant temperature. Next, the heat transfer from the compression chamber through the compressor walls is incorporated into the model. Finally, we consider the case near the valve wall, which is subject to the maximum temperature rise over the estimated 10,000 cycles that will be necessary for the process to occur. We find that for adiabatic conditions, there is a hot spot close to the wall where the vapor temperature can exceed the wall temperature. Lastly, we discuss the implications of our analysis, and its limitations

    Towards an interactive, process-based approach to understanding range shifts : developmental and environmental dependencies matter

    Get PDF
    Funding – Funding received from NERC DTP. Supplementary material (Appendix ECOG‐03975 at ). Appendix 1.Peer reviewedPostprin

    Morphological and geographical traits of the British Odonata

    Get PDF
    Trait data are fundamental for many aspects of ecological research, particularly for modeling species response to environmental change. We synthesised information from the literature (mainly field guides) and direct measurements from museum specimens, providing a comprehensive dataset of 26 attributes, covering the 43 resident species of Odonata in Britain. Traits included in this database range from morphological traits (e.g. body length) to attributes based on the distribution of the species (e.g. climatic restriction). We measured 11 morphometric traits from five adult males and five adult females per species. Using digital callipers, these measurements were taken from dry museum specimens, all of which were wild caught individuals. Repeated measures were also taken to estimate measurement error. The trait data are stored in an online repository (https://github.com/BiologicalRecordsCentre/Odonata_traits), alongside R code designed to give an overview of the morphometric data, and to combine the morphometric data to the single value per trait per species data

    Festival multisyn voices for the 2007 blizzard challenge.

    Get PDF
    This paper describes selected aspects of the Festival Multisyn entry to the Blizzard Challenge 2007. We provide an overview of the process of building the three required voices from the speech data provided. This paper focuses on new features of Multisyn which are currently under development and which have been employed in the system used for this Blizzard Challenge. These differences are the application of a more flexible phonetic lattice representation during forced alignment labelling and the use of a pitch accent target cost component. Finally, we also examine aspects of the speech data provided for this year's Blizzard Challenge and raise certain issues for discussion concerning the aim of comparing voices made with differing subsets of the data provided

    A comparision of GHG emissions from UK field crop production under selected arable systems with reference to disease control

    Get PDF
    Crop disease not only threatens global food security by reducing crop production at a time of growing demand, but also contributes to greenhouse gas (GHG) emissions by reducing efficiency of N fertiliser use and farm operations and by driving land use change. GHG emissions associated with adoption of reduced tillage, organic and integrated systems of field crop production across the UK and selected regions are compared with emissions from conventional arable farming to assess their potential for climate change mitigation. The reduced tillage system demonstrated a modest (<20%) reduction in emissions in all cases, although in practice it may not be suitable for all soils and it is likely to cause problems with control of diseases spread on crop debris. There were substantial increases in GHG emissions associated with the organic and integrated systems at national level, principally due to soil organic carbon losses from land use change. At a regional level the integrated system shows the potential to deliver significant emission reductions. These results indicate that the conventional crop production system, coupled to reduced tillage cultivation where appropriate, is generally the best for producing high yields to minimise greenhouse gas emissions and contribute to global food security, although there may be scope for use of the integrated system on a regional basis. The control of crop disease will continue to have an essential role in both maintaining productivity and decreasing GHG emissions.Peer reviewe
    corecore