512 research outputs found

    Gravitational wave recoil in Robinson-Trautman spacetimes

    Full text link
    We consider the gravitational recoil due to non-reflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black-hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black-hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have been appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the non-linear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the non-axisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.Comment: 9 pages, 6 figures, final version to appear in PR

    The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation

    Get PDF
    We assess models for the assembly of supermassive black holes (SMBHs) at the center of galaxies that trace their hierarchical build-up far up in the dark halo `merger tree'. We assume that the first `seed' black holes (BHs) formed in (mini)halos collapsing at z=20 from high-sigma density fluctuations. As these pregalactic holes become incorporated through a series of mergers into larger and larger halos, they sink to the center owing to dynamical friction, accrete a fraction of the gas in the merger remnant to become supermassive, form a binary system, and eventually coalesce. The merger history of dark matter halos and associated BHs is followed by cosmological Monte Carlo realizations of the merger hierarchy. A simple model, where quasar activity is driven by major mergers and SMBHs accrete at the Eddington rate a mass that scales with the fifth power of the velocity dispersion, is shown to reproduce the optical LF of quasars in the redshift range 1<z<4. Binary and triple BH interactions are followed in our merger tree. The assumptions underlying our scenario lead to the prediction of a population of massive BHs wandering in galaxy halos and the intergalactic medium at the present epoch, and contributing <10% to the total BH mass density. At all epochs the fraction of binary SMBHs in galaxy nuclei is of order 10%, while the fraction of binary quasars is less than 0.3%Comment: revised version, accepted for publication in the ApJ, emulateapj, 15 pages, 16 figure

    Four-Body Effects in Globular Cluster Black Hole Coalescence

    Get PDF
    In the high density cores of globular clusters, multibody interactions are expected to be common, with the result that black holes in binaries are hardened by interactions. It was shown by Sigurdsson & Hernquist (1993) and others that 10 solar mass black holes interacting exclusively by three-body encounters do not merge in the clusters themselves, because recoil kicks the binaries out of the clusters before the binaries are tight enough to merge. Here we consider a new mechanism, involving four-body encounters. Numerical simulations by a number of authors suggest that roughly 20-50% of binary-binary encounters will eject one star but leave behind a stable hierarchical triple. If the orbital plane of the inner binary is strongly tilted with respect to the orbital plane of the outer object, a secular Kozai resonance, first investigated in the context of asteroids in the Solar System, can increase the eccentricity of the inner body significantly. We show that in a substantial fraction of cases the eccentricity is driven to a high enough value that the inner binary will merge by gravitational radiation, without a strong accompanying kick. Thus the merged object remains in the cluster; depending on the binary fraction of black holes and the inclination distribution of newly-formed hierarchical triples, this mechanism may allow massive black holes to accumulate through successive mergers in the cores of globular clusters. It may also increase the likelihood that stellar-mass black holes in globular clusters will be detectable by their gravitational radiation.Comment: Submitted to ApJ Letters (includes emulateapj.sty

    Radiation recoil from highly distorted black holes

    Get PDF
    We present results from numerical evolutions of single black holes distorted by axisymmetric, but equatorially asymmetric, gravitational (Brill) waves. Net radiated energies, apparent horizon embeddings, and recoil velocities are shown for a range of Brill wave parameters, including both even and odd parity distortions of Schwarzschild black holes. We find that a wave packet initially concentrated on the black hole throat, a likely model also for highly asymmetric stellar collapse and late stage binary mergers, can generate a maximum recoil velocity of about 150 (23) km/sec for even (odd) parity perturbations, significantly less than that required to eject black holes from galactic cores.Comment: 15 pages, 8 figure

    Probing the presence of a single or binary black hole in the globular cluster NGC 6752 with pulsar dynamics

    Full text link
    The five millisecond pulsars that inhabit NGC 6752 display locations or accelerations that are quite unusual compared to all other pulsars known in globular clusters. In particular PSR-A, a binary pulsar, lives in the cluster halo, while PSR-B and PSR-E, located in the core, show remarkably high negative spin derivatives. This is suggestive that some uncommon dynamical process is at play in the cluster core that we attribute to the presence of a massive perturber. We here investigate whether a single intermediate-mass black hole, lying on the extrapolation of the Mass versus Sigma relation observed in galaxy spheroids, or a less massive binary consisting of two black holes could play the requested role. To this purpose we simulated binary-binary encounters involving PSR-A, its companion star, and the black hole(s). Various scenarios are discussed in detail. In our close 4-body encounters, a black hole-black hole binary may attract on a long-term stable orbit a millisecond pulsar. Timing measurements on the captured satellite-pulsar, member of a hierarchical triplet, could unambiguously unveil the presence of a black hole(s) in the core of a globular cluster.Comment: 13 pages, 8 figures, Accepted for publication in The Astrophysical Journa

    Gravitational Radiation from Intermediate-Mass Black Holes

    Full text link
    Recent X-ray observations of galaxies with ROSAT, ASCA, and Chandra have revealed numerous bright off-center point sources which, if isotropic emitters, are likely to be intermediate-mass black holes, with hundreds to thousands of solar masses. The origin of these objects is under debate, but observations suggest that a significant number of them currently reside in young high-density stellar clusters. There is also growing evidence that some Galactic globular clusters harbor black holes of similar mass, from observations of stellar kinematics. In such high-density stellar environments, the interactions of intermediate-mass black holes are promising sources of gravitational waves for ground-based and space-based detectors. Here we explore the signal strengths of binaries containing intermediate-mass black holes or stellar-mass black holes in dense stellar clusters. We estimate that a few to tens per year of these objects will be detectable during the last phase of their inspiral with the advanced LIGO detector, and up to tens per year will be seen during merger, depending on the spins of the black holes. We also find that if these objects reside in globular clusters then tens of sources will be detectable with LISA from the Galactic globular system in a five year integration, and similar numbers will be detectable from more distant galaxies. The signal strength depends on the eccentricity distribution, but we show that there is promise for strong detection of pericenter precession and Lense-Thirring precession of the orbital plane. We conclude by discussing what could be learned about binaries, dense stellar systems, and strong gravity if such signals are detected.Comment: Minor changes, accepted by ApJ (December 10, 2002

    Black-hole horizons as probes of black-hole dynamics I: post-merger recoil in head-on collisions

    Full text link
    The understanding of strong-field dynamics near black-hole horizons is a long-standing and challenging prob- lem in general relativity. Recent advances in numerical relativity and in the geometric characterization of black- hole horizons open new avenues into the problem. In this first paper in a series of two, we focus on the analysis of the recoil occurring in the merger of binary black holes, extending the analysis initiated in [1] with Robinson- Trautman spacetimes. More specifically, we probe spacetime dynamics through the correlation of quantities defined at the black-hole horizon and at null infinity. The geometry of these hypersurfaces responds to bulk gravitational fields acting as test screens in a scattering perspective of spacetime dynamics. Within a 3 + 1 approach we build an effective-curvature vector from the intrinsic geometry of dynamical-horizon sections and correlate its evolution with the flux of Bondi linear momentum at large distances. We employ this setup to study numerically the head-on collision of nonspinning black holes and demonstrate its validity to track the qualita- tive aspects of recoil dynamics at infinity. We also make contact with the suggestion that the antikick can be described in terms of a "slowness parameter" and how this can be computed from the local properties of the horizon. In a companion paper [2] we will further elaborate on the geometric aspects of this approach and on its relation with other approaches to characterize dynamical properties of black-hole horizons.Comment: final version published on PR

    A comparison of the optical properties of radio-loud and radio-quiet quasars

    Get PDF
    We have made radio observations of 87 optically selected quasars at 5 GHz with the VLA in order to measure the radio power for these objects and hence determine how the fraction of radio-loud quasars varies with redshift and optical luminosity. The sample has been selected from the recently completed Edinburgh Quasar Survey and covers a redshift range of 0.3 < z < 1.5 and an optical absolute magnitude range of -26.5 < M_{B} < -23.5 (h, q_{0} = 1/2). We have also matched up other existing surveys with the FIRST and NVSS radio catalogues and combined these data so that the optical luminosity-redshift plane is now far better sampled than previously. We have fitted a model to the probability of a quasar being radio-loud as a function of absolute magnitude and redshift and from this model infer the radio-loud and radio-quiet optical luminosity functions. The radio-loud optical luminosity function is featureless and flatter than the radio-quiet one. It evolves at a marginally slower rate if quasars evolve by density evolution, but the difference in the rate of evolutions of the two different classes is much less than was previously thought. We show, using Monte-Carlo simulations, that the observed difference in the shape of the optical luminosity functions can be partly accounted for by Doppler boosting of the optical continuum of the radio-loud quasars and explain how this can be tested in the future.Comment: 33 pages, 9 postscript figures, uses the AAS aaspp4 LaTeX style file, to appear in the 1 February 1999 issue of The Astrophysical Journa

    Head--on Collision of Two Unequal Mass Black Holes

    Get PDF
    We present results from the first fully nonlinear numerical calculations of the head--on collision of two unequal mass black holes. Selected waveforms of the most dominant l=2, 3 and 4 quasinormal modes are shown, as are the total radiated energies and recoil velocities for a range of mass ratios and initial separations. Our results validate the close and distant separation limit perturbation studies, and suggest that the head--on collision scenario is not likely to produce an astrophysically significant recoil effect.Comment: 5 pages, 3 figure

    A Very Hot, High Redshift Cluster of Galaxies: More Trouble for Omega_0 = 1

    Full text link
    We have observed the most distant (z=0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey, with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3 +3.1/-2.2 keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass ~ 7.4 x 10^14 h^-1 solar masses, if the mean matter density in the universe equals the critical value, or larger if Omega_0 < 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an Omega_0 = 1 universe. Combining the assumptions that Omega_0 = 1 and that the intial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that the probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10^{-5}. Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z>0.5z > 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and Omega_0 = 1, we find that each one is improbable at the < 10^{-2} level. These observations, along with the fact that these luminosities and temperatures of the high-zz clusters all agree with the low-z L_X-T_X relation, argue strongly that Omega_0 < 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.Comment: 20 pages, 4 figures, To appear in 1 Aug 1998 ApJ (heavily revised version of original preprint
    corecore