Recent X-ray observations of galaxies with ROSAT, ASCA, and Chandra have
revealed numerous bright off-center point sources which, if isotropic emitters,
are likely to be intermediate-mass black holes, with hundreds to thousands of
solar masses. The origin of these objects is under debate, but observations
suggest that a significant number of them currently reside in young
high-density stellar clusters. There is also growing evidence that some
Galactic globular clusters harbor black holes of similar mass, from
observations of stellar kinematics. In such high-density stellar environments,
the interactions of intermediate-mass black holes are promising sources of
gravitational waves for ground-based and space-based detectors. Here we explore
the signal strengths of binaries containing intermediate-mass black holes or
stellar-mass black holes in dense stellar clusters. We estimate that a few to
tens per year of these objects will be detectable during the last phase of
their inspiral with the advanced LIGO detector, and up to tens per year will be
seen during merger, depending on the spins of the black holes. We also find
that if these objects reside in globular clusters then tens of sources will be
detectable with LISA from the Galactic globular system in a five year
integration, and similar numbers will be detectable from more distant galaxies.
The signal strength depends on the eccentricity distribution, but we show that
there is promise for strong detection of pericenter precession and
Lense-Thirring precession of the orbital plane. We conclude by discussing what
could be learned about binaries, dense stellar systems, and strong gravity if
such signals are detected.Comment: Minor changes, accepted by ApJ (December 10, 2002