5,449 research outputs found

    On the number of trees with n terminal nodes

    Get PDF
    Number of trees with arbitrary number of terminal node

    Outline bibliography, and KWIC index on mechanical theorem proving and its applications

    Get PDF
    Bibliography and KWIC index on mechanical theorem proving and its application

    The value of improved (ERS) information based on domestic distribution effects of U.S. agriculture crops

    Get PDF
    The value of improving information for forecasting future crop harvests was investigated. Emphasis was placed upon establishing practical evaluation procedures firmly based in economic theory. The analysis was applied to the case of U.S. domestic wheat consumption. Estimates for a cost of storage function and a demand function for wheat were calculated. A model of market determinations of wheat inventories was developed for inventory adjustment. The carry-over horizon is computed by the solution of a nonlinear programming problem, and related variables such as spot and future price at each stage are determined. The model is adaptable to other markets. Results are shown to depend critically on the accuracy of current and proposed measurement techniques. The quantitative results are presented parametrically, in terms of various possible values of current and future accuracies

    Double Exchange in a Magnetically Frustrated System

    Full text link
    This work examines the magnetic order and spin dynamics of a double-exchange model with competing ferromagnetic and antiferromagnetic Heisenberg interactions between the local moments. The Heisenberg interactions are periodically arranged in a Villain configuration in two dimensions with nearest-neighbor, ferromagnetic coupling JJ and antiferromagnetic coupling −ηJ-\eta J. This model is solved at zero temperature by performing a 1/S1/\sqrt{S} expansion in the rotated reference frame of each local moment. When η\eta exceeds a critical value, the ground state is a magnetically frustrated, canted antiferromagnet. With increasing hopping energy tt or magnetic field BB, the local moments become aligned and the ferromagnetic phase is stabilized above critical values of tt or BB. In the canted phase, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. Due to a change in the topology of the Fermi surface from closed to open, phase separation occurs in a narrow range of parameters in the canted phase. In zero field, the long-wavelength spin waves are isotropic in the region of phase separation. Whereas the average spin-wave stiffness in the canted phase increases with tt or η\eta , it exhibits a more complicated dependence on field. This work strongly suggests that the jump in the spin-wave stiffness observed in Pr1−x_{1-x}Cax_xMnO3_3 with 0.3≤x≤0.40.3 \le x \le 0.4 at a field of 3 T is caused by the delocalization of the electrons rather than by the alignment of the antiferromagnetic regions.Comment: 28 pages, 12 figure

    Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    Get PDF
    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 1 figure, submitted to Proceedings of 2003 Gamma Ray Burst Conferenc

    Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    Full text link
    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head.Comment: 18 pages, 8 figures, revised and accepted for ApJ, A full resolution of the paper can be found at http://gammaray.nsstc.nasa.gov/~nishikawa/apjep1.pd

    Particle Acceleration in Relativistic Jets due to Weibel Instability

    Full text link
    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation (Medvedev 2000) from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.Comment: ApJ, in press, Sept. 20, 2003 (figures with better resolution: http://gammaray.nsstc.nasa.gov/~nishikawa/apjweib.pdf

    Magnetic Interaction in the Geometrically Frustrated Triangular Lattice Antiferromagnet CuFeO2\rm CuFeO_2

    Full text link
    The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2\rm CuFeO_2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J_1, J_2, J_3, with J2/J1≈0.44J_2/J_1 \approx 0.44 and J3/J1≈0.57J_3/J_1 \approx 0.57), as well as out-of-plane coupling (J_z, with Jz/J1≈0.29J_z/J_1 \approx 0.29) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy dips in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.Comment: 4 pages, 4 figures, published in Phys. Rev. Let
    • …
    corecore