2,548 research outputs found

    Quantum dimer models and exotic orders

    Full text link
    We discuss how quantum dimer models may be used to provide "proofs of principle" for the existence of exotic magnetic phases in quantum spin systems.Comment: 12 pages, 6 figures. Contributed talk at the PITP-Les Houches Summer School on "Quantum Magnetism", June 200

    Low temperature vortex liquid in La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4

    Full text link
    In the cuprates, the lightly-doped region is of major interest because superconductivity, antiferromagnetism, and the pseudogap state \cite{Timusk,Lee,Anderson} come together near a critical doping value xcx_c. These states are deeply influenced by phase fluctuations \cite{Emery} which lead to a vortex-liquid state that surrounds the superconducting region \cite{WangPRB01,WangPRB06}. However, many questions \cite{Doniach,Fisher,FisherLee,Tesanovic,Sachdev} related to the nature of the transition and vortex-liquid state at very low tempera- tures TT remain open because the diamagnetic signal is difficult to resolve in this region. Here, we report torque magnetometry results on La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4 (LSCO) which show that superconductivity is lost at xcx_c by quantum phase fluctuations. We find that, in a magnetic field HH, the vortex solid-to-liquid transition occurs at field HmH_m much lower than the depairing field Hc2H_{c2}. The vortex liquid exists in the large field interval HmHc2H_m \ll H_{c2}, even in the limit TT\to0. The resulting phase diagram reveals the large fraction of the xx-HH plane occupied by the quantum vortex liquid.Comment: 6 pages, 4 figures, submitted to Nature Physic

    Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition

    Full text link
    The competition between superconductivity and localization raises profound questions in condensed matter physics. In spite of decades of research, the mechanism of the superconductor-insulator transition (SIT) and the nature of the insulator are not understood. We use quantum Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures

    Predicting Phenotypic Diversity and the Underlying Quantitative Molecular Transitions

    Get PDF
    During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus

    The melanoma-specific graded prognostic assessment does not adequately discriminate prognosis in a modern population with brain metastases from malignant melanoma

    Get PDF
    The melanoma-specific graded prognostic assessment (msGPA) assigns patients with brain metastases from malignant melanoma to 1 of 4 prognostic groups. It was largely derived using clinical data from patients treated in the era that preceded the development of newer therapies such as BRAF, MEK and immune checkpoint inhibitors. Therefore, its current relevance to patients diagnosed with brain metastases from malignant melanoma is unclear. This study is an external validation of the msGPA in two temporally distinct British populations.Performance of the msGPA was assessed in Cohort I (1997-2008, n=231) and Cohort II (2008-2013, n=162) using Kaplan-Meier methods and Harrell's c-index of concordance. Cox regression was used to explore additional factors that may have prognostic relevance.The msGPA does not perform well as a prognostic score outside of the derivation cohort, with suboptimal statistical calibration and discrimination, particularly in those patients with an intermediate prognosis. Extra-cerebral metastases, leptomeningeal disease, age and potential use of novel targeted agents after brain metastases are diagnosed, should be incorporated into future prognostic models.An improved prognostic score is required to underpin high-quality randomised controlled trials in an area with a wide disparity in clinical care

    Non-Fermi-liquid d-wave metal phase of strongly interacting electrons

    Get PDF
    Developing a theoretical framework for conducting electronic fluids qualitatively distinct from those described by Landau's Fermi-liquid theory is of central importance to many outstanding problems in condensed matter physics. One such problem is that, above the transition temperature and near optimal doping, high-transition-temperature copper-oxide superconductors exhibit `strange metal' behaviour that is inconsistent with being a traditional Landau Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase could shed new light on the interesting low-temperature behaviour in the pseudogap regime and on the d-wave superconductor itself. Here we present a theory for a specific example of a strange metal---the 'd-wave metal'. Using variational wavefunctions, gauge theoretic arguments, and ultimately large-scale density matrix renormalization group calculations, we show that this remarkable quantum phase is the ground state of a reasonable microscopic Hamiltonian---the usual t-J model with electron kinetic energy tt and two-spin exchange JJ supplemented with a frustrated electron `ring-exchange' term, which we here examine extensively on the square lattice two-leg ladder. These findings constitute an explicit theoretical example of a genuine non-Fermi-liquid metal existing as the ground state of a realistic model.Comment: 22 pages, 12 figures: 6 pages, 7 figures of main text + 16 pages, 5 figures of Supplementary Information; this is approximately the version published in Nature, minus various subedits in the main tex

    Criticality in correlated quantum matter

    Full text link
    At quantum critical points (QCP) \cite{Pfeuty:1971,Young:1975,Hertz:1976,Chakravarty:1989,Millis:1993,Chubukov:1 994,Coleman:2005} there are quantum fluctuations on all length scales, from microscopic to macroscopic lengths, which, remarkably, can be observed at finite temperatures, the regime to which all experiments are necessarily confined. A fundamental question is how high in temperature can the effects of quantum criticality persist? That is, can physical observables be described in terms of universal scaling functions originating from the QCPs? Here we answer these questions by examining exact solutions of models of correlated systems and find that the temperature can be surprisingly high. As a powerful illustration of quantum criticality, we predict that the zero temperature superfluid density, ρs(0)\rho_{s}(0), and the transition temperature, TcT_{c}, of the cuprates are related by Tcρs(0)yT_{c}\propto\rho_{s}(0)^y, where the exponent yy is different at the two edges of the superconducting dome, signifying the respective QCPs. This relationship can be tested in high quality crystals.Comment: Final accepted version not including minor stylistic correction

    Two-dimensional Vortices in Superconductors

    Full text link
    Superconductors have two key characteristics. They expel magnetic field and they conduct electrical current with zero resistance. However, both properties are compromised in high magnetic fields which can penetrate the material and create a mixed state of quantized vortices. The vortices move in response to an electrical current dissipating energy which destroys the zero resistance state\cite{And64}. One of the central problems for applications of high temperature superconductivity is the stabilization of vortices to ensure zero electrical resistance. We find that vortices in the anisotropic superconductor Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} (Bi-2212) have a phase transition from a liquid state, which is inherently unstable, to a two-dimensional vortex solid. We show that at high field the transition temperature is independent of magnetic field, as was predicted theoretically for the melting of an ideal two-dimensional vortex lattice\cite{Fis80,Gla91}. Our results indicate that the stable solid phase can be reached at any field as may be necessary for applications involving superconducting magnets\cite{Has04,Sca04,COHMAG}. The vortex solid is disordered, as suggested by previous studies at lower fields\cite{Lee93,Cub93}. But its evolution with increasing magnetic field displays unexpected threshold behavior that needs further investigation.Comment: 5 pages and 4 figures. submitted to Nature Physic

    Powerlaw optical conductivity with a constant phase angle in high Tc superconductors

    Get PDF
    In certain materials with strong electron correlations a quantum phase transition (QPT) at zero temperature can occur, in the proximity of which a quantum critical state of matter has been anticipated. This possibility has recently attracted much attention because the response of such a state of matter is expected to follow universal patterns defined by the quantum mechanical nature of the fluctuations. Forementioned universality manifests itself through power-law behaviours of the response functions. Candidates are found both in heavy fermion systems and in the cuprate high Tc superconductors. Although there are indications for quantum criticality in the cuprate superconductors, the reality and the physical nature of such a QPT are still under debate. Here we identify a universal behaviour of the phase angle of the frequency dependent conductivity that is characteristic of the quantum critical region. We demonstrate that the experimentally measured phase angle agrees precisely with the exponent of the optical conductivity. This points towards a QPT in the cuprates close to optimal doping, although of an unconventional kind.Comment: pdf format, 9 pages, 4 color figures include

    Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings

    Get PDF
    The degree of randomness, or partial order, present in two-dimensional supramolecular arrays of isophthalate tetracarboxylic acids is shown to vary due to subtle chemical changes such as the choice of solvent or small differences in molecular dimensions. This variation may be quantified using an order parameter and reveals a novel phase behaviour including random tiling with varying critical properties as well as ordered phases dominated by either parallel or non-parallel alignment of neighbouring molecules, consistent with long-standing theoretical studies. The balance between order and randomness is driven by small differences in the intermolecular interaction energies, which we show, using numerical simulations, can be related to the measured order parameter. Significant variations occur even when the energy difference is much less than the thermal energy highlighting the delicate balance between entropic and energetic effects in complex self-assembly processes
    corecore