1,275 research outputs found

    Effects of mood and cognition on the social information-processing mechanisms underlying aggression

    Get PDF
    The purpose of this study was to examine the effects of executive functions and anger activation on the social information-processing mechanisms related to aggressive behavior. The social information-processing stages examined were attribution, goal selection, and response evaluation. Participants were randomly assigned to either an anger or neutral mood induction and listened to three different scenario types: accidental, ambiguous and hostile. Hypotheses were: 1) the anger group when compared to the neutral would demonstrate more hostile aggressive responding in interpretation attribution, goal evaluation, and response evaluation in the ambiguous and hostile conditions, 2) executive functioning would moderate the relationship between anger and hostile-aggressive responding. Results are discussed in terms of integrating affect and executive function into models of social information processing

    Predictors of Functional Outcomes following Operative Treatment of Acute Achilles Tendon Ruptures

    Get PDF
    Introduction: Previous studies involving operative management of Achilles tendon ruptures have attempted to determine if patient factors influence outcomes. No previous study has attempted to identify outcome predictors in patients exclusively undergoing surgical repair. The purpose of this study is to determine if any injury or patient variables were predictive of outcomes following operative management of Achilles ruptures. Methods: Patient demographics including age, sex, body mass index (BMI), comorbidities (diabetes mellitus, depression, anxiety), mechanism of injury (sports, non-sports), and date of injury were collected. Postoperative notes were reviewed to determine compliance. Patients completed the Foot & Ankle Ability Measure (FAAM)-Activities of Daily Living (ADL) and –Sports subscales, and visual analog scale (VAS) for pain. Multivariable regression analysis was performed, and regression coefficients with 95% confidence intervals and p-values were reported. Results: Female sex was associated with lower FAAM-Sports score (-10.11 [-19.73,-0.50]) and a lower Single Assessment Numeric Evaluation score from the FAAM-Sports subscale (-13.79 [-26.28,-1.30]; p=0.0325). History of anxiety was related to a lower FAAM-ADL score (-29.02 [-45.68, -12.36]; p=0.0009), FAAM-Sports score (-33.41 [-64.46, -2.37]; p=0.0368), and a higher VAS pain score (19.83 [4.43, 35.23]; p=0.0128). Age, BMI, a history of depression or diabetes mellitus, mechanism of injury, timing of repair, and patient compliance were not predictive. Discussion: Females and patients with anxiety have significantly poorer outcomes following Achilles tendon repair. Further study is indicated to determine whether these factors are also predictive of outcomes of Achilles ruptures treated non-surgically and how this may affect surgical indications in these patients

    Synthesis and polymorphism of mixed aluminium-gallium oxides

    Get PDF
    DSC is grateful to the EPSRC for award of an industrial CASE studentship, partly funded by Johnson Matthey plc. SEA, DMD and JEH thank the ERC (EU FP7 Consolidator Grant 614290 “EXONMR”) for funding. SEA would also like to thank the Royal Society and Wolfson Foundation for a merit award.The synthesis of a new solidsolution of the oxyhydroxide Ga5–xAlxO7(OH) isinvestigated via solvothermalreaction between gallium acetylacetonate and aluminium isopropoxide in1,4-butanediol at 240 °C. A limited compositional range 0 ≤ x ≤ 1.5 is produced, with the hexagonalunit cell parameters refined from powder X-ray diffraction (XRD) showing alinear contraction in unit cell volume with increasing Al content. Solid-state 27Aland 71Ga NMR spectroscopy show a strong preference for Ga to occupythe tetrahedral sites and Al to occupy the octahedral sites. Using isopropanolas the solvent, g-Ga2–xAlxO3defect spinel solid solutions with x ≤ 1.8 can be prepared at 240 °C in24 hours. These materials are nanocrystalline, as evidenced by their broaddiffraction profiles, but the refined cubic lattice parameter shows a linearrelationship with the Ga:Al content and solid-state NMR spectroscopy again showsa preference for Al to occupy the octahedral sites. Thermal decomposition ofthe Ga5–xAlxO7(OH)occurs via poorly ordered materials that resemble e-Ga2–xAlxO3and k-Ga2–xAlxO3,but g-Ga2–xAlxO3transforms above 750 °C to monoclinic b-Ga2–xAlxO3for 0 ≤ x ≤ 1.3 and to hexagonal a-Ga2–xAlxO3for x = 1.8, with intermediate compositions 1.3 < x < 1.8 giving mixturesof the aand b polymorphs.Solid-state NMR spectroscopy shows only the expected octahedral Al for a-Ga2–xAlxO3and, for b-Ga2–xAlxO3,the ~1:2 ratio of tetrahedral:octahedral Al is in good agreement with Rietveldanalysis of the average structures against powder XRD data. Relative energiescalculated by periodic density functional theory (DFT) confirm that there is a~5.2 kJ mol–1 penalty for tetrahedral rather than octahedral Al inGa5–xAlxO7(OH), whereas this penalty is muchlower (~2.0 kJ mol–1) for b-Ga2–xAlxO3,in good qualitative agreement with the experimental NMR spectra.PostprintPeer reviewe

    A mutational hot spot in keratin 10 (KRT 10) in patients with epidermolytic hyperkeratosis

    Get PDF
    Epidermolytic hyperkeratosis (EHK), (bullous congenital ichthyosiform erythroderma), is an autosomal dominant human skin disorder. Recently, we and others have described mutations in keratins 1 and 10 (K1 and K10) in patients with this disease. Structure-function models predict that these mutations would impair normal filament assembly and function. We have extended our earlier studies to include 8 more incidences of EHK. In half of these families, we were unable to locate a mutation within the rod domains of either K1 or K10. However, polymorphic restriction site and sequence analysis of the other families revealed a mutational hot spot within the 1A alpha-helical segment of K10. These involve Arginine to Histidine, Arginine to Cysteine and Arginine to Leucine substitutions at residue 10 of the rod domain. Interestingly, mutations in the corresponding Arginine residue in keratin K14 have been identified in patients with epidermolysis bullosa simplex. The large number of mutations found at this position in both keratins K10 and K14 suggests that other epithelia cell disorders will be discovered that are caused by the corresponding mutation in related type I keratin gene

    Genetic dissection of triplicated chromosome 21 orthologs yields varying skeletal traits in Down syndrome model mice

    Get PDF
    Down syndrome (DS) phenotypes result from triplicated genes, but it is generally unknown how specific three copy human chromosome 21 (Hsa21) orthologous genes or interactions between genes affect these traits. A mouse mapping panel genetically dissecting Hsa21 syntenic regions was used to investigate the contributions and interactions triplicated Hsa21 orthologous genes on mouse chromosome 16 (Mmu16). Four-month-old femurs of male and female Dp9Tyb, Dp2Tyb, Dp3Tyb, Dp4Tyb, Dp5Tyb, Dp6Tyb, Ts1Rhr, and Dp1Tyb;Dyrk1a+/+/- mice were analyzed by micro-computed tomography and 3-point bending to assess skeletal structure and mechanical properties. Male and female Dp1Tyb mice, with the entire Hsa21 homologous region of Mmu16 in three copies, display specific bone deficits similar to humans with DS and were used as a baseline comparison for the other strains in the panel. Bone phenotypes varied based on triplicated gene content, sex, and bone compartment. Three copies of Dyrk1a played a sex-specific, essential role in trabecular deficits and may interact with other genes to influence cortical deficits related to DS. Triplicated genes in Dp9Tyb and Dp2Tyb mice improved some skeletal deficits. As triplicated genes may both improve and worsen bone deficits, it is important to understand the interaction between and molecular mechanisms of skeletal alterations affected by these genes

    Low pressure radiofrequency balloon angioplasty: Evaluation in porcine peripheral arteries

    Get PDF
    AbstractObjectives. The purpose of this study was to evaluate the efficacy of radiofrequency-powered thermal balloon angioplasty in an in vivo porcine model.Background. Various modes of thermal energy used adjunctively during balloon angioplasty have demonstrated the potential to enhance the results of acute lumen dilation.Methods. In normal pigs, 75 peripheral arteries were dilated with a newly designed, radiofrequency-powered, thermal angioplasty balloon. All inflations were performed at 2-atm pressure for 85 s. Dilations were performed either with (hot) or without (cold) the application of heat. Lumen dimensions and vessel morphology were assessed with intravascular ultrasonography. At the end of each study, dilated arterial segments were harvested for histologic examination.Results. Single cold balloon inflations resulted in a 12.7% increase in arterial cross-sectional area whereas single hot inflations resulted in a 22.9% increase (p < 0.03). Similarly, when multiple cold inflations were compared with multiple hot inflations, two, three and four sequential hot inflations resulted in a significantly greater increase in cross-sectional area than an equivalent number of cold inflations (p < 0.03).Histologic examination demonstrated a temperaturedependent effect on the depth of medial necrosis and extent of arterial wall thinning (p < 0.001) as well as evidence for uniform alteration of elastic tissue fibers at temperatures of ≥60 °C (p < 0.03).Conclusions. Low pressure radiofrequency thermal balloon angioplasty results in a greater increase in cross-sectional area in porcine peripheral arteries than does nonheated conventional balloon angioplasty. The pathologic basis for this enhanced dilation may be a temperature-dependent effect on medial necrosis, thinning of the arterial wall or alteration of vascular elastic fibers, alone or in combination
    • …
    corecore