1,069 research outputs found

    NNEP: The Navy NASA Engine Program

    Get PDF
    A computer code capable of simulating almost any conceivable turbine engine is described. This code uses stacked component maps and multiple flowpaths to simulate variable cycle engines with variable component geometry. It is capable of design and off-design (matching) calculations and can optimize free variables such as nozzle areas to minimize specific fuel consumption

    Computer optimization of reactor-thermoelectric space power systems

    Get PDF
    A computer simulation and optimization code that has been developed for nuclear space power systems is described. The results of using this code to analyze two reactor-thermoelectric systems are presented

    Integrating theories of self-control and motivation to advance endurance performance

    Get PDF
    Self-control is a burgeoning research topic within sport and motivational psychology. Following efforts to define and contextualize self-control, characteristics of self-control are considered that have important implications for sport performance. We describe and evaluate various theoretical perspectives on self-control, including limited resources, shifting priorities, and opportunity-costs. The research described includes sport-specific research but also studies that focus on general motivational principles that look beyond sport-specific phenomena. We propose that attentional, rather than limited resource, explanations of self-control have more value for athletic performance. Moreover, we integrate self-control ideas with descriptions of motivational phenomena to derive novel hypotheses concerning how self-control can be optimized during sport performance. We explain how minimizing desire-goal conflicts by fusing self-control processes and performance goals can delay aversive consequences of self-control that may impede performance. We also suggest that autonomous performance goals are an important motivational input that enhances the effectiveness of self-control processes by a) reducing the salience of the desire to reduce performance-related discomfort, b) increasing attentional resources towards optimal performance, and c) optimizing monitoring and modification of self-control processes. These extensions to knowledge help map out empirical agenda which may drive theoretical advances and deepen understanding of how to improve self-control during performance

    Ultracold neutrons, quantum effects of gravity and the Weak Equivalence Principle

    Full text link
    We consider an extension of the recent experiment with ultracold neutrons and the quantization of its vertical motion in order to test the Weak Equivalence Principle. We show that an improvement on the energy resolution of the experiment may allow to establish a modest limit to the Weak Equivalence Principle and on the gravitational screening constant. We also discuss the influence of a possible new interaction of Nature.Comment: Revtex4, 4 pages. Discussion on the equivalence principle altered. Bound is improve

    The Laser Astrometric Test of Relativity Mission

    Get PDF
    This paper discusses new fundamental physics experiment to test relativistic gravity at the accuracy better than the effects of the 2nd order in the gravitational field strength. The Laser Astrometric Test Of Relativity (LATOR) mission uses laser interferometry between two micro-spacecraft whose lines of sight pass close by the Sun to accurately measure deflection of light in the solar gravity. The key element of the experimental design is a redundant geometry optical truss provided by a long-baseline (100 m) multi-channel stellar optical interferometer placed on the International Space Station. The geometric redundancy enables LATOR to measure the departure from Euclidean geometry caused by the solar gravity field to a very high accuracy. LATOR will not only improve the value of the parameterized post-Newtonian (PPN) parameter gamma to unprecedented levels of accuracy of 1 part in 1e8, it will also reach ability to measure effects of the next post-Newtonian order (1/c^4) of light deflection resulting from gravity's intrinsic non-linearity. The solar quadrupole moment parameter, J2, will be measured with high precision, as well as a variety of other relativistic. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.Comment: 8 pages, 2 figures, invited talk given at the Second International Conference on Particle and Fundamental Physics in Space (SpacePart'03), 10-12 December 2003, Washington, D

    Lorentz Invariance and the Cosmological Constant

    Get PDF
    Non-trivial solutions in string field theory may lead to the spontaneous breaking of Lorentz invariance and to new tensor-matter interactions. It is argued that requiring the contribution of the vacuum expectation values of Lorentz tensors to account for the vacuum energy up to the level that Ω0Λ=0.5\Omega_{0}^{\Lambda} = 0.5 implies the new interactions range is λ104m\lambda \sim 10^{-4} m. These conjectured violations of the Lorentz symmetry are consistent with the most stringent experimental limits.Comment: 13 pages, plain Latex. This essay was selected for an honorable mention in the 1997 Gravity Research Foundation essay competio
    corecore