43 research outputs found

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie

    Multiscale Computing in the Exascale Era

    Get PDF
    We expect that multiscale simulations will be one of the main high performance computing workloads in the exascale era. We propose multiscale computing patterns as a generic vehicle to realise load balanced, fault tolerant and energy aware high performance multiscale computing. Multiscale computing patterns should lead to a separation of concerns, whereby application developers can compose multiscale models and execute multiscale simulations, while pattern software realises optimized, fault tolerant and energy aware multiscale computing. We introduce three multiscale computing patterns, present an example of the extreme scaling pattern, and discuss our vision of how this may shape multiscale computing in the exascale era

    METALLIC HYDRIDES.Magnetic properties of laves-phase rare earth hydrides

    No full text
    La diffraction des neutrons montre que l'introduction d'hydrogène dans les composés RFe2 (R = Tm, Ho, et Er) diminue sensiblement la température de Curie moyenne et résulte en une réduction du moment à 0 K sur le site de terre rare. Le moment de la terre rare se désordonne à une température inférieure à la température critique macroscopique dans ErFe2H3,5. Le moment à 0 K du sous-réseau de fer dans ErFe2H3,5 est essentiellement le même que celui trouvé pour le composé non hydruré et reste sensiblement constant jusqu'à approximativement 0,8 Tc.Neutron scattering results show that the introduction of hydrogen into RFe2 compounds (R = Tm, Ho, and Er) significantly lowers the overall Curie temperature and produces a reduced 0 K moment on the rare earth site. The rare earth spins disorder at a temperature lower than the bulk Tc in ErFe3H3.5. The 0 K iron sublattice moment in ErFe2H3.5 is essentially the same as that found in the non-hydride compounds and remains nearly constant to approximately 0.8 Tc
    corecore