1,649 research outputs found

    Very Large Array Detection of the 36 GHz Zeeman Effect in DR21W Revisited

    Full text link
    We report on the observation of the 36 GHz methanol maser line in the star forming region DR21W to accurately measure the Zeeman effect. The reported Zeeman signature by Fish et al. (2011) became suspicious after an instrumental effect was discovered in the early days of the Very Large Array Wide-band Digital Architecture (WIDAR) correlator commissioning. We conclude that the previously reported magnetic field strength of 58 mG ((1.7 Hz/mG)/z) is instrumental in nature and thus incorrect. With the improved performance of the array, we now deduce a 3 sigma limit of -4.7 to +0.4 mG ((1.7 Hz/mG)/z) for the line-of-sight component of the magnetic field strength in DR21W.Comment: 6 pages, 1 figure, accepted for publication in Ap

    VLBA Observations of G5.89–0.39: OH Masers and Magnetic Field Structure

    Get PDF
    We present VLBA observations of 1667 MHz OH maser emission from the massive star formation region G5.89-0.39. The observations were phase-referenced, allowing the absolute positions of the masers to be obtained. The 1667 MHz masers have radial velocities that span ~50 km s^(-1) but show little evidence of tracing the bipolar molecular outflow, as has been claimed in previous studies. We identify 23 Zeeman pairs through comparison of masers in left and right circular polarization. Magnetic field strengths range from -2 to +2 mG, and an ordered reversal in magnetic field direction is observed toward the southern region of the UC H II region. We suggest that the velocity and magnetic field structure of the 1667 MHz masers can be explained in the context of a model in which the masers arise in a neutral shell just outside a rapidly expanding ionized shell

    Zooming towards the Event Horizon - mm-VLBI today and tomorrow

    Full text link
    Global VLBI imaging at millimeter and sub-millimeter wavelength overcomes the opacity barrier of synchrotron self-absorption in AGN and opens the direct view into sub-pc scale regions not accessible before. Since AGN variability is more pronounced at short millimeter wavelength, mm-VLBI can reveal structural changes in very early stages after outbursts. When combined with observations at longer wavelength, global 3mm and 1mm VLBI adds very detailed information. This helps to determine fundamental physical properties at the jet base, and in the vicinity of super-massive black holes at the center of AGN. Here we present new results from multi-frequency mm-VLBI imaging of OJ287 during a major outburst. We also report on a successful 1.3mm VLBI experiment with the APEX telescope in Chile. This observation sets a new record in angular resolution. It also opens the path towards future mm-VLBI with ALMA, which aims at the mapping of the black hole event horizon in nearby galaxies, and the study of the roots of jets in AGN.Comment: 6 pages, to appear in 11th European VLBI Network Symposium, ed. P. Charlot et al., Bordeaux (France), October 9-12, 201

    Demonstrating the Principles of Aperture Synthesis with TableTop Laboratory Exercises

    Full text link
    Many undergraduate radio astronomy courses are unable to give a detailed treatment of aperture synthesis due to time constraints and limited math backgrounds of students. We have taken a laboratory-based approach to teaching radio interferometry using a set of college-level, table-top exercises. These are performed with the Very Small Radio Telescope (VSRT), an interferometer developed at the Haystack Observatory using satellite TV electronics as detectors and compact fluorescent light bulbs as microwave signal sources. The hands-on experience provided by the VSRT in these labs allows students to gain a conceptual understanding of radio interferometry and aperture synthesis without the rigorous mathematical background traditionally required. The data are quickly and easily processed using a user-friendly data analysis Java package, VSRTI\_Plotter.jar. This software can also be used in the absence of the equipment as an interactive computer activity to demonstrate an interferometer's responses to assorted surface brightness distributions. The students also gain some familiarity with Fourier transforms and an appreciation for the Fourier relations in interferometry using another Java package, the Tool for Interactive Fourier Transforms (TIFT). We have successfully used these tools in multiple offerings of our radio astronomy course at Union CollegeComment: 10 pages, ISE 2 A "International Symposium on Education in Astronomy and Astrobiology

    Excited-state OH Mainline Masers in AU Geminorum and NML Cygni

    Full text link
    Excited-state OH maser emission has previously been reported in the circumstellar envelopes of only two evolved stars: the Mira star AU Geminorum and the hypergiant NML Cygni. We present Very Large Array (VLA) observations of the 1665, 1667, and excited-state 4750 MHz mainline OH transitions in AU Gem and Expanded Very Large Array (EVLA) observations of the excited-state 6030 and 6035 MHz OH mainline transitions in NML Cyg. We detect masers in both mainline transitions in AU Gem but no excited-state emission in either star. We conclude that the excited-state OH emission in AU Gem is either a transient phenomenon (such as for NML Cyg outlined below), or possibly an artifact in the data, and that the excited state OH emission in NML Cyg was generated by an episode of enhanced shock between the stellar mass-loss and an outflow of the Cyg OB2 association. With these single exceptions, it therefore appears that excited-state OH emission indeed should not be predicted nor observable in evolved stars as part of their normal structure or evolution.Comment: ApJ Letter, accepted, 4 pages, 2 figure

    Enhanced density and magnetic fields in interstellar OH masers

    Full text link
    Aims: We have observed the 6030 and 6035 MHz transitions of OH in high-mass star-forming regions to obtain magnetic field estimates in both maser emission and absorption. Methods: Observations were taken with the Effelsberg 100 m telescope. Results: Our observations are consistent with previous results, although we do detect a new 6030 MHz maser feature near -70 km/s in the vicinity of W3(OH). In absorption we obtain a possible estimate of -1.1 +/- 0.3 mG for the average line-of-sight component of the magnetic field in the absorbing OH gas in K3-50 and submilligauss upper limits for the line-of-sight field strength in DR 21 and W3. Conclusions: These results indicate that the magnetic field strength in the vicinity of OH masers is higher than that of the surrounding, non-masing material, which in turn suggests that the density of masing OH regions is higher than that of their surroundings.Comment: 19 pages including online material, accepted to A&
    corecore