1,506 research outputs found

    Effective Potential on Fuzzy Sphere

    Get PDF
    The effective potential of quantized scalar field on fuzzy sphere is evaluated to the two-loop level. We see that one-loop potential behaves like that in the commutative sphere and the Coleman-Weinberg mechanism of the radiatively symmetry breaking could be also shown in the fuzzy sphere system. In the two-loop level, we use the heavy-mass approximation and the high-temperature approximation to perform the evaluations. The results show that both of the planar and nonplanar Feynman diagrams have inclinations to restore the symmetry breaking in the tree level. However, the contributions from planar diagrams will dominate over those from nonplanar diagrams by a factor N^2. Thus, at heavy-mass limit or high-temperature system the quantum field on the fuzzy sphere will behave like those on the commutative sphere. We also see that there is a drastic reduction of the degrees of freedom in the nonplanar diagrams when the particle wavelength is smaller than the noncommutativity scale.Comment: Latex 18 pages, some typos correcte

    Fractal Holography: a geometric re-interpretation of cosmological large scale structure

    Get PDF
    The fractal dimension of large-scale galaxy clustering has been demonstrated to be roughly DF2D_F \sim 2 from a wide range of redshift surveys. If correct, this statistic is of interest for two main reasons: fractal scaling is an implicit representation of information content, and also the value itself is a geometric signature of area. It is proposed that the fractal distribution of galaxies may thus be interpreted as a signature of holography (``fractal holography''), providing more support for current theories of holographic cosmologies. Implications for entropy bounds are addressed. In particular, because of spatial scale invariance in the matter distribution, it is shown that violations of the spherical entropy bound can be removed. This holographic condition instead becomes a rigid constraint on the nature of the matter density and distribution in the Universe. Inclusion of a dark matter distribution is also discussed, based on theoretical considerations of possible universal CDM density profiles.Comment: 13 pp, LaTeX. Revised version; to appear in JCA

    Entropy of gravitating systems: scaling laws versus radial profiles

    Get PDF
    Through the consideration of spherically symmetric gravitating systems consisting of perfect fluids with linear equation of state constrained to be in a finite volume, an account is given of the properties of entropy at conditions in which it is no longer an extensive quantity (it does not scale with system's size). To accomplish this, the methods introduced by Oppenheim [1] to characterize non-extensivity are used, suitably generalized to the case of gravitating systems subject to an external pressure. In particular when, far from the system's Schwarzschild limit, both area scaling for conventional entropy and inverse radius law for the temperature set in (i.e. the same properties of the corresponding black hole thermodynamical quantities), the entropy profile is found to behave like 1/r, being r the area radius inside the system. In such circumstances thus entropy heavily resides in internal layers, in opposition to what happens when area scaling is gained while approaching the Schwarzschild mass, in which case conventional entropy lies at the surface of the system. The information content of these systems, even if it globally scales like the area, is then stored in the whole volume, instead of packed on the boundary.Comment: 16 pages, 11 figures. v2: addition of some references; the stability of equilibrium configurations is readdresse

    Heavy Mineral Variability And Provenance Of The Virginia Inner Shelf And Lower Chesapeake Bay

    Get PDF
    The mineral composition of the 3- to 4-phi (0.125 to 0.063 mm) size fraction of 49 surficial grab samples,located north and south of the entrance to Chesapeake Bay and of 38 surficial samples, located in the bay mouth, was determined during this study. Although up to 17 minerals were identified, principal components analysis indicated that seven minerals accounted for 96 percent of the composition variance in the bay samples. By using Q-mode factor analysis, three mineral composition end-members (factors) were selected from the sample data and provided an adequate description of the spatial variation in heavy-mineral composition. The end members suggest possible mineral sources.https://scholarworks.wm.edu/vimsbooks/1105/thumbnail.jp

    A Procedure for Assessing Heavy Mineral Resources Potential

    Get PDF
    Supplies of placer heavy minerals, such as ilmenite, rutile, zircon, and monazite, are anticipated to be in short supply by early in the next century. The depletion of conventional onshore deposits coupled with the declaration of the Exclusive Economic Zone in 1983 have provided the impetus to assess the resource potential of heavy-mineral concentrations in U.S. Continental Shelf sediments as future sources for these mineral commodities. Mineralogically imprecise assessments of placer resources result from analyses of concentrates derived from small volume samples because of the particle-sparsity effect. The overall low grade of heavy minerals in Atlantic Continental Shelf sediments require the analysis of mineral concentrates from large volumes of bulk sample. A set of procedures to extract and analyze heavy minerals from large-volume samples is presented.https://scholarworks.wm.edu/vimsbooks/1103/thumbnail.jp

    Lepto-mesons, Leptoquarkonium and the QCD Potential

    Get PDF
    We consider bound states of heavy leptoquark-antiquark pairs (lepto-mesons) as well as leptoquark-antileptoquark pairs (leptoquarkonium). Unlike the situation for top quarks, leptoquarks (if they exist) may live long enough for these hadrons to form. We study the spectra and decay widths of these states in the context of a nonrelativistic potential model which matches the recently calculated two-loop QCD potential at short distances to a successful phenomenological quarkonium potential at intermediate distances. We also compute the expected number of events for these states at future colliders.Comment: 12 pages, 1 figure, 3 tables, plain TeX, requires harvmac. References updated and minor clarifications made. To appear in Physics Letters

    Leptogenesis from Pseudo-Scalar Driven Inflation

    Full text link
    We examine recent claims for a considerable amount of leptogenesis, in some inflationary scenarios, through the gravitational anomaly in the lepton number current. We find that when the short distances contributions are properly included the amount of lepton number generated is actually much smaller.Comment: JHEP style, 11 pages. Corrected typ

    Consequences of Supergravity with Gauged U(1)R\rm U(1)_R Symmetry

    Get PDF
    The structure of gauged R supergravity Lagrangians is reviewed, and we consider models with a hidden sector plus light fields of the MSSM. A simple potential for the hidden sector is presented which has a global minimum with zero cosmological constant and spontaneously broken SUSY and R-symmetry. The U(1)R\rm U(1)_R vector multiplet acquires a Planck scale mass through the Higgs mechanism, and it decouples at low energy. Due to very interesting cancellations, the U(1)R\rm U(1)_R D-terms also drop out at low energy. Thus no direct effects of the gauging of R-symmetry remain in the low energy effective Lagrangian, and this result is model independent, requiring only that R-symmetry be broken at the Planck scale and =0 = 0, where DD is the auxiliary field of the U(1)R\rm U(1)_R vector multiplet. The low energy theory is fairly conventional with soft SUSY breaking terms for the MSSM fields. As a remnant of the gauging of R-symmetry, it also contains light fields, some required to cancel R-anomalies and others from the hidden sector.Comment: 36 pages, plain LaTeX, all macros included, no figure

    Heavy Mineral Concentrations In Sediments Of The Virginia Inner Continental Shelf

    Get PDF
    The Virginia Division of Mineral Resources and the Virginia Institute of Marine Science investigated the occurrence of heavy minerals in the offshore sediments of Virginia. We began the project because earlier reconnaissance studies reported high heavy-mineral concentrations from several samples collected off the Eastern Shore of Virginia. Our work confirms the previously reported mineral values and locates additional high concentrations up to 20 nautical miles offshore. Furthermore, we show that potentially economic mineral values are not restricted no surficial sediments, but also are found in the upper 15 to 20 feet of inner continental shelf sediments. Several core samples indicate that potential economic values of heavy minerals are clustered offshore of Hog Island, Smith Island, Virginia Beach, and False Cape. These areas are likely targets for resource assessment studies of heavy minerals and construction or beach nourishment sand. The high heavy-mineral concentrations suggest that further investigations are warranted.https://scholarworks.wm.edu/vimsbooks/1104/thumbnail.jp

    Hologrphy and holographic dark energy model

    Full text link
    The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived.Comment: no figures, use revtex, v2: use iop style, some typos corrected and references updated, will appear in CQ
    corecore