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Abstract 

The structure of gauged R-supergravity Lagrangians is reviewed, and we consider models with a 
hidden sector plus fight fields of the MSSM. A simple potential for the hidden sector is presented 
which has a global minimum with zero cosmological constant and spontaneously broken SUSY 
and R-symmetryl The U(1) R vector multiplet acquires a Planck scale mass through the Higgs 
mechanism, and it decouples at low energy. Due to very interesting cancellations, the U(1)R 
D-terms also drop out at low energy. Thus no direct effects of the gauging of R-symmetry remain 
in the low-energy effective Lagrangian, and this result is model independent, requiting only that 
R-symmetry be broken at the Planck scale and (D) = 0, where D is the auxiliary field of the 
U(I)  R vector multiplet. The low-energy theory is fairly conventional with soft SUSY breaking 
terms for the MSSM fields. As a remnant of the gauging of R-symmetry, it also contains light 
fields, some required to cancel R-anomalies and others from the hidden sector. 

1. Introduction 

It is well known that N = 1 supersymmetry (SUSY) and supergravity (SG) theories 

admit a special R-symmetry which distinguishes between bosonic and fermionic super- 

partners. R-symmetry can appear either as a discrete Z2 or a continuous U ( 1 )  R group. 

In the latter form it engenders the chiral rotation Q,~ --~ (ei°r-'Q),~ of the Majorana 

supercharge Q,~. A discrete version of global U(  1)R symmetry is usually incorporated 
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in phenomenological models because it forbids terms which would otherwise lead to 
rapid proton decay. Gauged U ( I )  R is only permitted in supergravity, and we discuss 
this below with the simple motivation that it is generally the gauge form of a symmetry 
which is most powerful and therefore worth study. 

The minimal structure required for gauged R-symmetry is the supergravity multiplet 
( e ~ ( x ) ,  ~ ( x ) )  and a vector multiplet ( R u ( x ) ,  p ( x )  ) containing the R-photon and its 
superpartner. Gauging U( 1)R produces [ 1 ] covariant derivatives 

D ~ k v  = "Dgravdt ~ ,rv + igRizYs~k~ , (1.I)  
D # p  = D~ravp + igR~zysp , 

and a shift of the D auxiliary field corresponding to a Fayet-Iliopoulos [2] (FI) pa- 
rameter ( = 2 g / K  2, where K z = 40rGN = 1/M~l is the gravitational coupling. Conversely, 
coupling a global SUSY theory with a FI term to SG requires the axial gauge interaction 

in ( 1.1 ) with g = ~:Kz/2. 
In the early 1980's, gauged R-supergravity theories including chiral multiplets were 

discussed from the viewpoints of superspace [3], K~hler geometry [4], and auxiliary 
fields [5], and simple models were studied [6]. Surprisingly enough it was only very 
recently that a paper appeared [7] which addresses the issue of cancellation of the 
anomalies of the axial R-symmetry and discusses realistic models. The work we present 
below is similar in spirit to [7], but there are very significant differences. 

The general R-invariant model contains ( eau, qt~ ) and ( R u, p )  as previously men- 
tioned, additional vector multiplets (A~, 2t a) for the other gauged internal symmetries 
(e.g., those of the standard model or an extension of it), and chiral multiplets (z ~, X~). 
The U( 1 )R charges are specified in the covariant derivatives 

D A a = 7")grav,'~a _ ~  ,. + i g R ~ y s A  a +  
D u X  ~ = D~ravxa + ig (r~  - 1 ) R u y s X  ~ + . . . .  (1.2) 

D ~ z  '~ = O~Z a + i g r a R u z  a + . . . .  

where + . . .  indicates the gauge coupling of the A~ fields. One sees that r~ is the 
intrinsic R-charge of the chiral multiplet (z ~, X'~), and that for r,~ = 0, a chiral multiplet 
fermion has opposite R-charge to any gaugino or to the gravitino. 

From (1 . l )  and (1.2), one sees that in general all fermions in the theory contribute 
to anomalous triangle graphs. Although a Green-Schwarz mechanism for cancellation 
of the R-anomaly has been discussed [8,7], we shall adopt the view that the anomaly 
should be cancelled by constraining the R-charges of the particles that enter the theory. 
In Section 4 we discuss these anomalies and the restrictions on the particle content 
of the theory that are entailed by their cancellation. In particular, anomaly cancellation 
with gauge group SU(3)c × SU(2)w × U(1)v  requires that the minimal extension of 
the standard model (MSSM) be extended to include new chiral multiplets carrying both 
non-trivial standard model quantum numbers and R-charges. We choose one particular 
extension, but there are other possibilities. 

A second important ingredient of the models is the superpotential W ( z  ~') which must 
have R-charge 2, i.e. 
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r~z W,~ = 2W , (1.3) 

and we shall assume an additive split between hidden and observable fields W -- Wh+Wo. 
Wh and Wo must separately satisfy (1.3). The K~hler potential K(z '~, ~ )  is assumed 
to be R-invariant, viz, 

Z r ~ ( z ~ K , ~ - Z ~ K , ~ ) = O ,  (1.4) 
Ot 

and there is a U(1)  R D-term 

2 
D = Z r~zaK," + K-'5 (1.5) 

Ot 

for which the constant shift is just the FI term. The complete scalar potential is then 

V = e K2K [D~WGaBDBW- 3K2WW] + 1 2 D 2 +  (1.6) 
2 g . . . .  

where GaB = K~ B is the K~ihler metric, G ' ~  is its inverse, 

D,~W = W,~ + tc2K W , (1.7) 

and . . .  indicates D-terms for the standard model gauge groups. The potential is con- 
structed by arranging the hidden sector so that it is positive semi-definite with minimum 
value  gmin = 0, and such that D = 0 at the minimum. This last requirement must be 
imposed to avoid Planck scale masses for scalar fields in the observable sector, but we 
shall see that this phenomenological requirement also has important theoretical conse- 
quences. Supersymrnetry is broken in the vacuum at an adjustable intermediate energy 
scale which is then related to the mass of the gravitino m3/2. R-invariance is broken at 
the scale Mpl, however, since Eqs. (1.5) and (1.6) generically give vacuum expectation 
values (VEVs) of this order. 

The special features of gauged R-Lagrangians thus include: (i) Field content con- 
strained by R-anomaly cancellation, (ii) superpotential with R-charge 2, and (iii) shifted 
D-term with D = 0 at minimum. Nevertheless our principal result is that the direct ef- 
fects of gauged R-symmetry cannot be detected at low energy. In part this is obvious, 
the R-photon mass is of order gMpl, so photon exchange graphs are negligible at low 
energy. More surprising is the fact that the net contribution of the light fields in the 
D-term of (1.6) also cancels when the heavy sector fields are integrated out. For this the 
condition (D) = 0 is crucial. So the low-energy effective Lagrangian does not contain 
the U( 1 )R coupling g. It does contain weakly coupled light fields beyond those of the 
MSSM, some required to cancel anomalies and others from the hidden sector. 

In Section 2 we discuss how to obtain the key formulae of gauged R-models presented 
above from the general component Lagrangian of [4,9]. In Section 3 we present our 
simple proposal for the hidden sector superpotential. The hidden sector contains an 
accidental global U(1)  symmetry that is spontaneously broken and therefore gives a 
Nambu-Goldstone (NG) boson. This symmetry can be broken explicitly by modifying 
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the superpotential, if desired. The R-anomaly conditions are discussed in Section 4, 
where we determine a particular assignment of the r ,  for all fields. In Section 5 we 
discuss the full theory of coupled hidden and observable sectors. Solutions of the /x- 
term and gluino mass problems have been incorporated. Section 6 is devoted to the 
low-energy effective Lagrangian of our gauged R-supergravity model, and some of the 
special features of its phenomenology are discussed in Section 7. Results are briefly 
summarized in Section 8, and Appendix A is devoted to a discussion of quadratic 
divergences. 

2. Gauged R-models 

The derivation of these models by superspace techniques can be found in [9]. Our 
discussion is based on the K~ihler geometric component Lagrangian of [4,9]. There is 
no need to present the full Lagrangian, which is complicated. Instead we will discuss 
only the relevant terms, using the conventions of [ 1 ] (but with the 2K 2 of [ 1 ] replaced 
by t¢ 2 here, and the U(1)R coupling e of [1] replaced by - g  here). 

In the Kiihler-geometric viewpoint, the infinitesimal R-transformation of the scalar 
fields z" with parameter O defines a holomorphic Killing vector V '~ by 

8z ~ = - i r ~ z a O  ~_ V ~ O ,  
~Sg ~ = + i r ~ a  0 = V a O .  (2.1) 

It is a general mathematical result that a holomorphic Killing vector is the gradient of 
a real scalar potential D ( z ,  g ) ,  

G , B V B  = iD ,a ,  (2.2) 

and D is unique up to an additive constant for an abelian symmetry. We have made the 
simplifying assumption that R acts linearly on the coordinates z ~ (x) and that the Kiihler 
potential K ( z ,  g )  is invariant (see (1.4)).  D is then given by the simple expression 

D = iK ,~V  ~ + ~ /g .  (2.3) 

It is quite striking that the familiar D-terms of SUSY gauge theories have a Kahler- 
geometric interpretation and that the FI parameter ~ of global SUSY is just the shift 
ambiguity of the Killing potential D. 

If we define the dimensionless constant c = (K2 /2g ,  then the U( 1 )R covariant deriva- 
tive of the SUSY partner X ~ of z" is initially [4,9] 

D ~ X  ~ = ('D/~ "av ÷ ig (r~  -- c)R~ys) X ~. (2.4) 

The gauge covariance of the superpotential is then expressed by the K~hler covariant 
condition (see Ref. [4],  p. 311) 

V " D , W  = -- iK2D W (2.5) 
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with D,W defined in (1.7). Using (2.3) one sees that this reduces to 

Z r~z~W,~ = 2cW. (2.6) 
Cg 

At this point we can scale the R-charges by r~ --~ cry. One sees that c drops from 

(2.6),  which then reduces to (1.3),  and that c can be absorbed by redefinition of  the 
coupling constant gc --~ g in (2.4) and everywhere in the full Lagrangian of  [4,9].  So 
c (o1" ~:) is really a superfluous parameter of  the SG theory. 

We thus reach the conclusion that a gauged U(1 )  symmetry in SG can appear in the 

Lagrangian in two discretely different modes: the FI mode in which (1 .1 ) - (1 .3 )  and 
(1.5) hold, and the conventional mode, which is the one for the U(1 )  hypercharge of  

the standard model. In this case the fermion and boson components of  a supermultiplet 

have the same hypercharge, and the superpotential must be invariant, i.e. 

~Y~z~W,~  = 0 ,  (2.7) 
O/ 

where Y, is the hypercharge of  z '~. The D-term Dr = ~ Y~z~K,~ is unshifted. The 

low-energy manifestations of  the gauge symmetry are also very different. We shall now 

proceed, with c = 1 in all formulae above, as justified by the argument of  this section. 

3. The hidden sector 

For the sake o f  simplicity, we will work in this section with units K z = 1, except 
when a discussion of  mass scales is required. Also, let us distinguish between hidden 
fields z'~(x) and observable fields y i ( x )  and assume an additive Kahler potential 

K = K(z, g) + S ~ i y i .  (3.1) 
i 

The natural scale o f  D is the Planck mass, so if (D} is not zero, (1.6) contains an 

unacceptably large mass term [7] 

g2(D ) ~ ~iyi. (3.2) 

i 

For this reason we must arrange the hidden sector so that (D} = 0. 
We can satisfy both (D) = 0 and (V} = 0, with a pair of  hidden fields zl, z2 and the 

superpotential 

W = m3-a-bz~zb, (3.3) 

where m is a parameter of  intermediate scale m < Mpb We use subscripted field 
variables to distinguish between the field index 1 or 2 and the exponent a or b. The 
K~ihler geometry of  the hidden sector is that of  a product of  hyperboloids with K~ihler 

potential 

K(z, Z) = 1 ln(1 - ClglZl) -- L ln(1 - c2~2z2) • (3.4) 
cl c2 
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Each hyperboloid  is thus described as the disc Izi[ < 1 / c i .  W satisfies (1.3) if  

arl + br2 = 2.  (3.5) 

We now discuss condit ions such that the quantity 

= D a W G ~ # D ~ W -  3 W W  

p a - l p b - l  [p2(a  + (1 -- a c l ) p l )  2 + p l ( b  + (1 - bc2)p2)  2 - 3pip2] (3.6) = 1 2 

where Pl = Zt z2 and p2 = z2z2, has its global minimum at V = 0. I f  (D) = 0 also holds, 

then the full potential  V of  (1.6) is minimized with zero cosmological  constant. We 

choose a,  b < 1, so that pl  = p2 = 0 is not a minimum. It is then sufficient to require 

that the quantity in square brackets in (3.6) is minimized with respect to pl  and P2 and 

vanishes at the minimum. These conditions can be written as 

[ ]  
- -  = 

Pl P2 

[ ],p~ 
P 2  

[ ],p2 
Pl 

( a +  (1 - a c l ) p ~ )  2 

Pl 
+ 

- 2  (1 - a c l ) ( a +  (1 - a c l ) P l )  + 

- 2 ( 1 - bc2) (b  + ( 1 - bcz )p2)  

( a +  (1 - a c l ) P l )  2 
+ - 3 = 0 .  

Pl 

9-v ' 

( b +  (1 - bcz )p2)  2 _ 3 = 0 ,  (3.7) 

P2 

( b + ( 1  - b c 2 ) p 2 )  2 - 3 = 0 ,  (3.8) 

P2 

(3.9) 

Straightforward manipulat ions then give the conditions ) 1(1 ) 
- - =  - c i  , - - =  - c 2  , ( 3 . 1 0 )  
Pl P2 

a 2 b 2 3 
- - +  - - = - .  (3.11) 
P l  P 2  4 

When (3.10) is substituted in (3.11) one finds a simple cubic relation among the four 

parameters a,  b, Cl, c2. The conditions 2 c l a  < 1 and 2c2b < 1 are also required so that 

the geometric constraints plCl < 1 and p2c 2 < 1,  respectively, are satisfied. 

The condit ions above ensure that V has a stationary point  with (V) = 0, and one can 

check that it is a local minimum. We now wish to ensure that the surface D = 0 passes 

through this minimum. Using (1.5) and (3.4) one finds that the D = 0 condition is 

D - r l P  l + r2P2 + 2 = 0 .  (3.12) 
1 - c ip l  1 -- c2P2 

Eqs. (3 .5) ,  ( 3 . 1 0 ) - ( 3 . 1 2 )  constitute five condit ions on the eight quantities a, b, r l ,  rz, 

cl ,  c2, p j ,  P2- We choose arbitrarily a = b = ½ and rl  = 5, r2 = - 1 .  The equations can 

be solved analyt ical ly and yield 

5 - v ' 5  4 
cl = 4 ' Pl = 3 + ~ (3.13) 

- 1  + v/2-] " 4 
C2 = , P 2  = - -  

4 
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which satisfy the geometric constraints. For the parameters a, b, rl, r2, Cl, c2 of this 
solution, we have obtained computer plots which indicate that ~" ~> 0 globally with the 
minimum at Pl, P2 of (3.13). 

This solution lies on a three-dimensional hypersurface in the space of parameters. It 
is easy to explore this surface by choosing other values of a, b, rl, r2 which satisfy 

(3.5) and then find the solution of (3.10)-(3.12). For some values of these input 
parameters one finds that either cl or c2 or both are negative. From (3.4) one sees 

that this corresponds to the Kahler geometry of a two-sphere rather than a hyperboloid. 
However, in all these "would-be-spherical" cases, the pi values were complex, which 
is unacceptable. So we have partial numerical evidence to suggest that there are no 

spherical KS_hler geometries which satisfy the required physical conditions. 

The superpotential (3.3) has an additional accidental U(1) symmetry, which we call 
S-symmetry, for any pair of charges sl, s2 that satisfy 

asl q- bs2 = 0. (3.14) 

Both R-symmetry and S-symmetry are spontaneously broken, since (zl) and (z2) are 
non-vanishing. The R Nambu-Goldstone boson is absorbed by the R-photon in the 

Higgs effect, but the S NG boson remains as a massless particle of the hidden sector 
unless the S-symmetry is explicitly broken. Since the monomial z~-r2z~ ~ is R-invariant 

but not S-invariant, the S-symmetry may be broken by considering the more complicated 
superpotential 

! --r2 r l  W' = m2-a-bz~zb( 1 q -  3/ Z 1 Z 2 ) . ( 3 . 1 5 )  

We have not studied this case, but since we have added a new parameter, it should be 
possible to find acceptable vacuum solutions. 

As a possible alternative to W ( z l ,  z2) of (3.3), we studied the superpotential 

W t! = Zl (1 + y"ZlZ2) , (3.16) 

which has R-charge 2 if r l  = 2,  r2 = -2 .  With the KS.hler potential (3.4), there 
are three real parameters, and four conditions to determine the values of IZl], Iz21 at 
stationary points of V with (D) = 0. So a count of conditions suggest that there should 
be a one-parameter family of solutions. However, our numerical exploration was rather 
unsuccessful. Search programs were numerically unstable, and it took a great deal of 
work to obtain a solution with parameter values cl = 0.0684, c2 = 30.2, y"  = 1, and 
zl = 1.05, z2 = 0.181. The large ratio of the curvatures c2 to cl is unattractive. For these 
reasons we have not pursued alternatives to (3.3) further. 

The next step is to obtain the mass spectrum of the hidden sector particles. We shall 
consider general values of the parameters a, b, rl, r2, although we shall occasionally 
adopt the specific values for which the explicit vacuum parameters (3.13) were found. 

Scalar fields are parameterized as 

1 ei4a,~(x)/v,, Z'~(x) = - ~  (v  a + A ~ ( x )  ) (3.17) 
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with real VEVs v ~ related to the p~ of (3.6) by (v~') 2 = 2p,~. The phases ~b" (x) are 

linear combinations of the Nambu-Goldstone for the broken R- and S-symmetries. To 
disentangle them we write the VEV of the Killing vector of (2.1) in terms of its length 
V 2 = V~G~BV ~ and a real unit vector V~" as 

v" =ilv[9 ~. 

We then use the orthonormal basis ~ ' ~ ,  [,'~ 

for R- and S-invariance as 

(3.18) 

G~'Be/~,?~'Y'~j and define the Higgs bosons 

r(x) = f/13dP#(x) , s(x) = 0/~b/~(x). (3.19) 

The latter is R-gauge invariant. It is then straightforward to write the scalar kinetic 
Lagrangian as 

a,,8 

2G~c)~A~3VA ~ + 

(3.20) 

The second form is valid to quadratic order in the fluctuations. One sees that r(x) can 
be gauged away and that the R-gauge boson acquires the Planck scale mass 

M 2 = 2g21V[ 2. (3.21) 

The scalar mass matrix can be obtained by Taylor expansion of the potential V of 
(1.6) about its minimum. The result is 

V ~ -~1 [2gZlViZ~a~Ba~a B +4ma(3_~,_O)eXplap2b (3.22) 

x ((1 -- acl)2(al) 2 + (1 - bc2)Z(a2)2)]. 

The fact that the phases r(x) and s(x) drop out confirms that they are NG fields. 
The mass matrix is dominated by the D-term contribution, and it is easy to see that 
one linear combination of A l and A 2, predominantly V~A '~, has Planck scale mass 
2g2M21 + (.9(mZ(m/Mpl)4-2a-2b), and the orthogonal combination has mass of order 
0 (11"t 2 ( m / m p 1 )  4-2a-2b). 

To analyze the fermion mass spectrum, we need the non-derivative Fermi bilinear 
terms in the Lagrangian, namely, 

--x/2gA (V, Lx  '~ + VaRx ~) - ½gD~uyuysA 

- e  x/2 I ~tuo'~U (WL + W R ) ~  4- i½~uy ~ (D, WLx '~ 4- DaWRx ~) (3.23) 

+ ½2~Z)~D~WLx ~ + ½2~D~D~-~Rx~, 
) 
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where D , W  has been defined in (1.7), and 79,D#W is the K~ihler covariant second 
derivative 

7)~Dt~W -~ cg,~Dt~W - F~I~DrW + K, aD~W. (3.24) 

We choose the unitary gauge condition 

(D~W) LX '~ = 0 ,  (3.25) 

which is compatible with the 6X '~ transformation rule and makes the contribution to the 

mass matrix of  the ~ • yX '~ term vanish. We can then identify the gravifino mass 

m3/2 = K 2 (eK2X/Zw} = m 3-a-b e~z(K}/2(pl)a/2"(p2)b/2/M21 • (3.26) 

For the case a = b --- 1/2, a gravitino mass of  electroweak order implies an intermediate 

scale m ~-, 10 l ° - l l  GeV. 

One should note the orthogonality relation 

( W D ~ W )  = 0 ,  (3.27) 

which follows immediately from the invariance condition (2.5) in the (D) = 0 vacuum. 
The two physical spinors are thus the superpositions of  a ( x )  and V,,1/~(x) which 

diagonalize the mass matrix of  (3.23),  while the NG spinor is the orthogonal mode 
U,X ~ ~ (D~W) ,1 ,~ = 0. Only the A(x)V~x~(x)  mixing term in (3.23) is of  Planck 
scale, and it is easy to see that to leading order, as Mp1 --+ c~, the theory contains two 
Majorana states of  mass M 2 = 2g2G~BV~VB. Exact diagonalization of  the mass matrix 

would split these states by an amount of  order m3/2. 
Thus the hidden sector contains the massive spin 1 R-vector boson, with two Majorana 

spinors and the scalar A(x )  = ~',~A~(x), all of  mass close to M 2 = 2g2lVl 2. This 

is effectively a massive N = 1 supersymmetric vector multiplet. The supertrace mass 

formula of  the broken theory is [9] 

StrA42 = E ( - 1 ) 2 s  ( 2 J  q- 1) Tr./M 2 
spins,J 

/ ~- Dc, WD~-W\ 
=2m~/2-g2(DZ)  W 2 g 2 ( G a B D , ~ [ ~ D } - 2 m ~ / a ~ R I 3 1 - ~ I  2 ) , (3.28) 

where R ' ~  is the Ricci tensor obtained from the Kahler metric. The right-hand side of  

(3.28) is independent of  MpI because (D) = 0, and therefore it may be expected that 
the Planck mass states form massive supermultiplets. 

Supersymmetry is spontaneously broken, so there is a massive gravitino with mass 
m3/z given in (3.26),  and there is an additional scalar B(x )  = O~A"(x) whose mass is 
of  the same order. The graviton remains massless and so does the S NG field s (x)  of  
(3.19). For general values of  the parameters a, b of  the superpotential, the S-symmetry 
current has an anomaly, so s (x)  is an axion. I f  a = b, however, the S-current is vector- 
like; there is no anomaly, and s (x)  is a massless NG boson. This vector-like property 
will not hold in the quark sector when the MSSM is included. 
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One could consider a more complicated hidden sector in which additional chiral mul- 
tiplets (z ~, X ~) enter the superpotential Wh(z~). Due to the finite StrA42 requirement 
and the fact that SUSY is broken at an intermediate scale, there is a general constraint 
that states which acquire mass of order Mpl must occur as massive supermultiplets. 
However Mp1 scale scalar masses can only come from the D-term contribution to the 
potential V and Mpl scale spinor masses only from the g~x term in (3.23). But if 
(D) = 0 only one scalar acquires a large mass, and there is just one pair of large mass 
Majorana spinors. It is then a general result that the only Mp1 scale states are those of 
the massive vector multiplet containing the R-photon, while other particles in the hidden 
sector have masses of order m3/2 plus possible massless states from global symmetries. 
A corollary of this argument is that the minimum size of a hidden sector with MpI 
scale R-breaking is the massless R-vector multiplet plus two chiral multiplets. These 
multiplets contain the three Majorana spinors which form the Goldstino and the two 
Mp1 partners of the R-photon. 

The hidden sector model presented above is not consistent as a complete theory 
because it contains U( 1 )R anomalies. The cancellation of anomalies between hidden and 
observable chiral fermions is the subject of the next section. We will find it necessary 
to add one additional hidden chiral multiplet (Z3,X3).  We assume that this does not 
directly enter the superpotential in order not to disturb the simple analysis of the vacuum 
which we have made here. 

4. Anomal ies  and the MSSM 

In this section we study the anomaly cancellation conditions in a gauged R-super- 
gravity model with hidden sector fields z ~ plus the fields of the MSSM which are shown 
in Table 1. We assume that the MSSM part of the superpotential contains the following 
conventional Yukawa interactions: 

Wo = ~Y~uQ + JYd~dQ + eYeq~dL, (4.1) 

where the Yu,d,e are Yukawa coupling matrices. The covariant derivatives (1.1), (1.2) 
show that U(1)  n is a chiral symmetry which couples to all fermions in the theory, 
those of chiral multiplets, the gauginos, and the gravitino. There are anomalous triangle 
graphs with various contributions of external R-photons, standard model gauge bosons, 
and gravitons. 

The anomaly cancellation conditions written in terms of the fermionic R-charges, 
which are related to the superfield ones by ~ = r - 1, are 

' -  0, (4 .2)  3 (-drQ + + ½fL foe) + C, = 

3_2 (3~Q + ?r) + ½ (?~,, + lea) + 2 + C2 = 0, (4.3) 

3_2 (2?O + ?a + rd) + 3 + C3 = 0, (4.4) 

__2 __ ~2 L + ~2) "t- ( ~ , , - - F 2 a )  "l- C4 = 0 ,  (4 .5)  3 - + r j  
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Table 1 
MSSM quantum numbers 

Q ~ d L g qou t~ d 

U ( 1 ) r  + 1  2 _[_1 1 1 1 
3 --~ +1 + 7  - 7  

SU(2)  w 2 1 1 2 1 2 2 
SU(3)  c 3 g 3 1 I 1 1 

3(67~ + 37~ + 3~ 3 +  2? 3 + f } )  + 2 ( ~ , + f 3 , , , )  + 1 6 + C s = 0 ,  (4.6) 

3 (67Q + 3~  + 3P d + 2?L + re) + 2 (?~,, + ~,~) -- 8 + C6 = 0. (4.7) 

Eqs. (4 .2)-(4.7)  correspond, respectively, to the U (1 )2 r -  U(1) R, SU(2)~v-  U(1) R, 
SU(3)~ - U( 1 )R, U(1) r - U( 1)2, U( 1)3, and gravitational mixed anomalies. Here 
we have taken into account that there are thirteen vector multiplets in the theory, 
whose fermionic components carry R-charge 1, and that the gravitino contribution to 
the anomaly is 3 and -21  times the one of a Majorana fermion in (4.6) and (4.7), 
respectively [ 10]. We have also assumed three generations of MSSM quark and lep- 
ton superfields. The contributions to the different anomalies from any extension to the 
MSSM as well as from hidden fields are denoted by Ci. 

The superpotential (4.1) must have R-charge 2, and this imposes further conditions 
on some of the R-charges: 

fQ + 70 + fe,, = --1, (4 .8)  

?Q -+- re] -t- ?q)d ----" --1, (4.9) 

?L + ?e + r~,, = --1. (4.10) 

The MSSM without any extension cannot be anomaly free. This can easily be recognized 
by realizing that the subsystem of Eqs. (4.2)-(4.4)  and (4.8)-(4.10) is only compatible 
when the relation 

CI q - C 2  - 2C3 = 6  ( 4 . 1 1 )  

is satisfied. Therefore, adding new particles carrying SM quantum numbers is required 
to cancel some anomalies. This is a necessary but not sufficient condition to make the 
whole system of equations consistent. 

Many possible additions to the MSSM can be considered [7]. Here we choose one 
particular extension consisting of two new chiral supermultiplets whose SM quantum 
numbers (SU(3)c,  SU(2)w, U ( 1 ) r )  are D = (3, 1 , - 1 / 3 )  and /3 = (3, 1 ,+1 /3 ) .  We 
also add the two hidden fields responsible for SUSY breaking, as discussed in Section 3, 
with R-charges rl = 5 and r2 = -1 .  This particular extension of the MSSM is motivated 
by the decomposition of fundamental representations of various larger groups, such as 
the 27 of E6 or the 5 of SU(5),  under the SM group. In SU(5),  (cl)u,D) and (~d , / ) )  
correspond to 5 and 5 representations, respectively. The D and/3 are hence referred to 
as color-triplet Higgses. Although we allude to grand unified theory (GUT) groups, it 



D.J. Castat~o et aL /Nuclear Physics B 461 (1996) 50-70 61 

will become evident that the R-charge assignments are not compatible with the SU(5)  

structure, for example. The compatibility condition (4.11) implies that the sum of  the 

R-charges o f  D a n d / )  is fixed, 

?D + ?b = --9. (4.12) 

Using (4 .2 ) - (4 .5 ) ,  all light field, fermionic R-charges can be expressed in terms 

of  two of  them which we take to be f~- and f?- or equivalently, 0- = ?~ + ~aa + 2 and 

8 = 77 - 72-. One then obtains from (4.7) the following relations between 0- and 8: 

8 = 30- + 09, (4.13) 

where 09 = 26"6(;')/3 - 30, and the superscript h denotes the contribution to Ci from the 

hidden sector. In terms of  0- and 09, the fermionic R-charges for all the observable fields 

are 

0- 3 30- 29 
FQ = - - ' ~  "1- ~ ,  ?L = 2 6 ' 

09 - 2 309 - 32 
?~ = 20 -  + - - ,  77 = - 3 0 -  

2 6 
0 9 + 2  30- 0 9 + 3  

?7 = - 0 -  2 ' ?~" = 2 2 ' 

209 - 50 30- 09 - 3 
?D = 0 - +  9 ' r ~ = ~ +  2 ' 

209 + 3 1  
F ~ =  - o -  9 (4.14) 

Inserting these expressions into (4.6) yields a relation between the t e rms  C~ h) and C(6 h) 

2709 3 + 720092 + 648009 + 54584 - 72C (h) = 0 .  (4.15) 

This relation is not satisfied for the minimal hidden sector set {71,72} discussed earlier, 
so the system of equations is incompatible in this case. Adding a third chiral superfield 
(z3, 2"3) allows for a solution, albeit irrational. Rationality of  the R-charges is however 
not required in this case, since there is no embedding of  U(1 )  R in a larger group, and 
there is no R-charge quantization condition. Rationality is possible if more hidden fields 

are added [7] .  
Inserting w = 273/3 - 86/3 into (4.15), one gets the equation for 73, 

8?~ + 89732 - 2647?3 + 21944 = 0 ,  (4.16) 

with real solution ?3 = -27 .0823 .  There remains one free parameter 0- in the determi- 
nation of  the R-charges, but it is not necessary to specify it for our purposes. 

Before concluding this section, we will briefly mention that the theory also has a 
K~ihler anomaly [8] .  However, since the KS.hler manifolds that we are dealing with are 
topologically trivial, and there is no global or gauge symmetry realized non-linearly on 
them, the cancellation of  this anomaly is not necessary for the consistency of  the theory. 
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5. The complete model 

Although the low-energy consequences of gauged R-symmetry are largely model 
independent, we wish to present a particular model in this section which appears to 
have a reasonably correct phenomenology, The model contains the 17 chiral and 12 
vector multiplets of the MSSM, the SG and R-vector multiplets, plus 3 hidden chiral 
multiplets and two SU(3)c triplet chiral multiplets. The model is anomaly free as 
explained in the last section. 

We choose the Kahler potential 

K =  1 ln(1 - cllzl[ 2) - l l n ( 1  - c21z212) + Iz312 
c1 c2 

a I 
+ ~ [Y/I 2 + 

i 

The first four terms describe a hyperbolic Kahler metric for the fields Zl, z2, and flat 
Kahler geometry for z3 and all other chiral multiplets. The fifth term is a Giudice- 
Masiero term [ 11 ], involving the fields z2 and the Higgs scalars, which is introduced 
to solve the/x  problem in the model. If  this were the only addition, the KS.hler metric 
obtained from K would not be positive definite. Therefore we add the last term, and it 
is not difficult to show that for a '  > a 2, the metric is everywhere positive definite. 

We assume that the full superpotential is the sum of the term (3.3) for the hidden 
sector (with a = b = 1/2, rl = 5, r2 = - 1 )  and (4.1) for the observable sector. We now 
discuss the determination of the vacuum state of the complete theory. It is easy to see 
that the field configuration (z3) = (Yi) = 0 and (z~} and (z2} as determined in Section 3 
is certainly a local minimum of the full theory with (D) = 0 and vanishing cosmological 
constant. However, one cannot be certain that it is the global minimum and that the 
full potential is positive semi-definite. The same question arises but is rarely discussed 
[ 12,13 ] in most of the other N = 1 SG models in the literature. We have examined this 
issue in the simpler situation of the superpotential 

W = m 2 ( Z l Z2 ) 1/2 4_ apty3,  ( 5.2) 

in which the observable sector is simulated by the single chiral field y with cubic 
interaction and flat K~hler potential. Numerical work then shows that the local minimum 
with (y) = 0 is in fact the global minimum. The same property has also been shown to 
hold for the Polonyi potential plus cubic term 

W = m 2 ( z  - f l )  q- A " y  3 (5 .3 )  

with fiat Kahler potential. 
The CDF lower bound on the gluino mass is approximately 150 GeV. Since the model 

as so far specified does not contain a classical gluino mass, we modify it by introducing 
a non-trivial gauge kinetic function [ 14]. The following two forms 

f,~e = 6,~e( 1 + "yK6Zl Z 5 ) , (5.4) 
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fa/3 = ~a/3(1 -1- ~/ln K6ZlZ 5) (5.5) 

each generate a gluino mass of order m3/2. Both expressions are R-invariant, but they 
have different behavior under the S-synunetry discussed in Section 3. The first term 
violates the symmetry explicitly. The second term maintains a non-linear realization of 
the symmetry and contains an explicit axion coupling, s ( x ) F F .  Thus the two terms 
have different implications for axion physics as we will discuss in Section 7. 

6. Low-energy limit 

The low-energy limit of a N = 1 supergravity theory is obtained by integrating out 
the heavy fields to get the tree vertices of the low-energy effective Lagrangian. As we 
will see, this process is a bit more subtle for gauged R-theories than for conventional 
ones. In principle one should also study loop diagrams, and we will study here a 
particularly crucial set which threatens to introduce quadratic divergences and spoil the 

gauge hierarchy which is the major motivation for studying SUSY. 
We begin by discussing an effect which we find to be very striking although not 

directly relevant to the low-energy limit. For every fermion in the theory, one can isolate 
from the Lagrangian the covariant kinetic term and the Kahler connection term. For the 

gravitino these are 

£¢,, = - ½ e  apg~ [~aysyuD~CJp - l x 2 ~ a y j J p  ( K , . D ~ z "  - K.~D~U)] .  (6.1) 

The second term is a dimension-6 operator whose effects are normally negligible at low 
energy, but since (K,~z a) ,,~ M2pl , there are induced dimension-4 vertices (,aC, pR~. 

From the covariant derivatives (1.1), (1.2), one finds the net contribution 

~(&¢R) = tgeaP~V~a3//z~p R~ 1 
2 

• [ 1 A p t z  ~ - = ~ge  ~t.~')/~pR~, 1 

+ ~ K r ~  
,A 

D - V  , (6.2) 

where ( 1.4), ( 1.5) have been used. Since (D) = 0, we see that the minimal coupling 
of the R-photon to the gravitino actually vanishes in the effective Lagrangian. The same 
cancellation can be seen to hold for all gauginos A (a), while for chiral fermions there 
is a partial cancellation, so that the fermion R-charges (ra - I)  in (1.2) are replaced 
by r,~. So the "displacement" of the fermion and boson R-gauge couplings, which is 
one of the most conspicuous features of  the initial Lagrangian, cancels. This is a quite 
robust feature of gauged R-models, independent of the details of the hidden sector and 
requiring only (D) = 0. The reason for the cancellation is that, since SUSY is broken 
through the hidden sector superpotential, the dimension-4 terms in the Lagrangian of 
fluctuations about the vacuum preserve global SUSY. Dimension-4 couplings to the 
U(1)  R vector multiplet must be those of a U(1)  SUSY gauge theory, so the z a , X  ~ 
Components of any chiral multiplet couple to R~, with the same strength. Of course, 
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since the R-photon mass is ,-~ gMpi, tree graphs with R-photon exchange are negligible 
at low energy, whether or not the U(1)R charge displacement of bosons and fermions 
cancels. 

In conventional SG models one can obtain the low-energy effective Lagrangian of the 
observable fields simply by replacing hidden fields by their VEVs in the superpotential 
sector. In our model this is not sufficient because there is a heavy hidden field A(x )  
which obtains its order gMp1 mass from the large D-terms in the Lagrangian, namely, 

_½g2D2 = _~g2 ( v ~ l v i  A + D(2)(y~,B)  + . . . )2 . (6.3) 

The linear term in D was already obtained in the mass matrix calculation of Section 3, 
and 7) (2) denotes all quadratic terms in the light fields. We may simplify the discussion 
by dropping terms + . . .  in D when (D) = 0 and also A 2 and Ayi terms from the 

superpotential contribution because their low-energy effects are suppressed by the factor 
rn3/2/Mpl compared to the terms included. At low energy one can also drop O~,A terms 
in the Lagrangian. One then sees that all relevant terms in A appear as the perfect square 
(v~t  V[A + D (2))2. Gaussian integration over A (x) ,  or equivalently, substitution Of the 
solution of its equation of motion, then gives a complete cancellation. In particular the 
term (7)(2))2, which would have survived if the naive procedure of replacing hidden 
fields z ~ by their VEVs were used, cancels 4. The condition (D) = 0 is vital to the 
above argument. For (D) v~ 0, some of the terms dropped above must be kept, and 
substitution of the resulting solution to the equation of motion for A(x )  yields residual 
dimension-4 contact terms in the light fields as well as Mpl masses for these. One can 
also integrate out the heavy R-photon and its spinor superpartners, and it is easy to see 

that all residual effects on light fields are suppressed. 
We therefore reach the conclusion that all traces of the gauging of R-symmetry 

disappear from the low-energy effective Lagrangian. This consists of the renormalizable 
Lagrangian of the supersymmetric gauge theory of the SU(3)c x SU(2)w x U ( 1 ) y  
standard model group, free kinetic terms for the light fields B(x )  and s (x)  of the 
hidden sector, scalar potential and Yukawa terms from the superpotential part of the 
original Lagrangian, and finally dimension-3 and -4 operators from the non-minimal 
gauge interactions introduced in Section 5 to generate gaugino masses. We now proceed 
to discuss the scalar potential sector of the Lagrangian. 

The low-energy limit in the scalar potential sector of the theory is taken in a conven- 
tional way. The superpotential is given by the sum of hidden and observable pieces. The 
hidden fields zl, z2 pick up VEVs of order Mpl. With our choice of the hidden superpo- 
tential we have (Wh) N m 2 M p l  . The gravitino mass is therefore of order m3/2 ~ m2/Mvl. 
The low-energy limit corresponds to taking Mpl -+ (x~ while keeping m 3 / 2  fixed. In tak- 
ing this limit the potential is expanded around the vacuum, and only the terms that are 
not suppressed by powers of 1/MpI survive. The resulting potential exhibits the form of 
a SUSY potential plus soft SUSY-breaking terms 

4 This result disagrees with that of Ref. [7], where CD (2) (ya))2 was included in the low-energy Lagrangian. 
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( 2 ) +m /21Yir2 +Bt ol ÷At o 3+h.c., (6.4) 

where l~o = Woe'~2(x)/2+#~u~a, and [ l,iZo] 2 and [Wo]3 refer to the bilinear and trilinear 
parts of W~,, respectively. The sum extends over all observable scalars of the theory. All 
these particles acquire a mass of the order of m3/2. In our class of models, the effective 
/x and the soft trilinear and bilinear parameters are given by the following expressions: 

2b( 1 - c2p2) 
/z = A m3/2 v / ~  - v ~  J '  (6.5) 

A =2 (a + b) m3/2, (6.6) 

B =2 Am2/z ( V ~  (6.7) 
\ 

b(1 - c2P2) 

where P2 is assumed dimensionless and equal to its value in (3.13). 
The low-energy effects of loop diagrams from the full Lagrangian should be examined. 

In the main, this study is beyond the scope of the present paper. However it is known 
that a SUSY gauge theory for gauge groups containing U(1) factors has quadratic 
divergences [15,16], unless the trace condition TrT = 0 is satisfied for each U(1) 
generator T. This fact can usually be ignored because the condition TrT = 0 is also 
required for anomaly cancellation. However in our case, the Tr R condition for anomaly 
cancellation includes gaugino and gravitino contributions while, as we will explain, that 
for quadratically divergent scalar mass shifts involves only the chiral spinors, and both 
conditions cannot hold simultaneously. Since quadratic divergences for the light scalars 
would spoil the gauge hierarchy, which is normally protected by global SUSY, it is 
important to examine this situation. 

In global SUSY the quadratic divergences emerge from the U(1) D-terms 

lg2D 2 1 (  Z )2 
2 = - 2  r~'ff~Z~ + ~ + ~ (6.8) 

(For simplicity we assume a flat K~ihler metric to illustrate our point.) The quartic 
coupling leads to the usual one-loop quadratic mass shift diagram for z ~. Part of the 
divergence is cancelled by fermion and gauge boson loops, but there is an uncancelled 
remainder which can be expressed as the counter term 

~ g 2 ( ~ r a )  A2 (6.9) 

for the FI parameter (A is the ultraviolet cutoff). In our case there is a shift of the 
fields which makes (D / = 0, and that turns out to be crucial. In Appendix A, we show 
that the quadratic divergence cancels for the unshifted (light) scalars, but the shifted 
(heavy) scalar mass is still divergent. This is enough to show that the gauge hierarchy 
is not spoiled for a global U(1) SUSY gauge theory if (D / = 0. In our full supergravity 
theory, there are additional divergent one-loop mass shift diagrams. For example, those 
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with a graviton or gravitino in the loop are individually quartic divergent. So we have a 
possible mass counter term of the form 

6m 2 ,.~ 1 (A 4 + m2/2A2 + m4/2 In A 2) . (6.10) 

We do not study those diagrams here; but our intuition is that the quartic divergence 
cancels, and the residual quadratic divergence is of no concern for the gauge hierarchy, 
since one must take a cutoff of the size A ,-~ Mpl in the quantum supergravity theory. 

7. Low-energy phenomenology 

Although we will not attempt a complete study of all the phenomenological conse- 
quences of the model, we shall briefly comment on some selected issues. As discussed in 
Section 3, the specific model being considered has an accidental chiral global symmetry 
of the Peccei-Quinn (PQ) type due to the interactions of  the super and K~ihler potentials. 
After the spontaneous breaking of supersymmetry, there results a (pseudo) NG boson 
referred to as an axion, whose decay constant is of order Mp1. Non-perturbative QCD 
instanton effects result in a mass for the axion, which in this model is too small due to 
the large scale of symmetry breaking. A very small mass is forbidden by cosmology, 
since it would lead to overclosing the universe. 

As in the MSSM, the simplest solution to this problem is to explicitly break the 
S, or PQ, symmetry. This can be done by changing Wh as mentioned in Section 3, 
but it is more interesting to observe that the non-minimal gauge interaction (5.4) that 
was introduced in Section 4 to solve the gluino mass problem also breaks S-symmetry. 
The second non-minimal gauge interaction (5.5) leaves the axion unacceptably light, 
unless the coefficient of this term is tuned to cancel the s ( x ) F F  term from the one-loop 
quantum anomaly. This would leave a strictly massless NG boson with no connection 
to the strong CP problem. So we do not pursue this curious, but apparently not useful, 
possibility. 

As in conventional models, the Lagrangian of our model contains conserved currents 
for the global U(1)  symmetries of baryon (B) and lepton (L) number. If  only the 
hidden fields and the Higgs scalar acquire VEVs, then these symmetries are preserved 
and the proton is stable. However, one should also consider modifications of the super- 
potential which could lead to the decay of the proton. In particular our model contains 
color-triplet Higgses, and these may mediate an unacceptable rate of proton decay. The 
allowed interactions of the color-triplets however are very constrained due to gauged 
R-symmetry which requires that rw = 2. Given the hidden sector content of the par- 
ticular model under consideration, all potentially dangerous, renormalizable interactions 
involving the color-triplets are forbidden independently of o- (see (4.14)) 

Q L D + -ff-g D + Q Q D + -ff d D . (7.1) 

Indeed, all renormalizable B and L violating terms are also forbidden, 
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~a-d + QCd + LL-e, 

67 

(7.2) 

thus avoiding the problem of rapid proton decay. Models with a gauged discrete sym- 
metry have been proposed to solve the proton decay problem [ 17]. We have not investi- 
gated the interesting possibility that such models are the (discrete) remnants of gauged 
R-symmetry. 

There is a conserved vectorial D-current, so the model contains stable color-triplet 
states. The R-charges of  the color-triplets are such that an explicit mass term in the 
superpotential is forbidden, as it is for the Higgs isospin doublets. Although the scalar 
partners of the isosinglet quarks will receive soft breaking contributions to their masses, 
the isosinglet quarks will remain massless unless, for example, a Giudice-Masiero type 
term is included for them in the K~hler potential. Given our hidden sector, a possible 
term would have the form A K  = .ADK7Z2Z3-DD, and will yield a mass on the order of 
m3/2. This interaction also removes the axion even in the absence of (5.4). 

The present model is not consistent with grand unification since, for example, the 
interactions of isopin-doublets and color-triplet Higgses are independent. Furthermore the 
R-charges of the chiral fields are GUT-incompatible. Nevertheless it should be pointed 
out that such a particle content is consistent with superstring phenomenology. Even in 
the absence of a GUT structure, superstring theories predict gauge unification. However, 
the model under consideration will be plagued by the light threshold corrections of the 
color-triplets, and gauge unification will require either new intermediate scale thresholds 
or a mechanism for generating a large mass for the color-triplets. These possibilities 
will not be explored any further in this paper. 

8. Conclusion 

R-symmetry can only be gauged in the context of supergravity, and it is natural to 
consider the consequences of gauged R-symmetry for phenomenological models. The 
superpotential is constrained to have R-charge 2, and we have presented a simple hidden 
sector superpotential for which the vacuum state, with R-symmetry broken at the scale 
Mp1, can be obtained analytically. The requirement that the U(1)  R D-term vanish in 
this vacuum was imposed initially to avoid Mp1 scale masses for scalar particles of 
the MSSM, but this requirement turns out to have two important consequences for the 
structure of the models considered. First, all terms involving the U(1)  R gauge coupling 
g cancel in the low-energy effective Lagrangian, which is then rather conventional with 
universal soft SUSY-breaking terms involving the MSSM fields. Second, the quadratic 
divergences which would be expected in a global SUSY theory with TrR ~ 0 cancel 
lbr light fields. In the literature [6,5] there are statements that the fiat limit of gauged 
R-supergravity theories involves g --. 0 as a mathematical limit of parameters, and the 
condition (D) = 0 is not mentioned. By contrast our proof of the cancellation of terms 
involving g came from studying the physical low-energy limit of amplitudes in the full 
SG theory, and (D) = 0 was a required condition. 
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Another salient feature of SG theories with gauged R is the constraint on the field 
content required to avoid triangle anomalies. To cancel anomalies one must add [7] 
fields which carry standard model quantum numbers but are not present in the MSSM, 
and one must also add chiral multiplets to the hidden sector beyond the two multiplets 
which play a role in determining the vacuum. 

The principal conclusion that the effects of gauging R-symmetry cannot be directly 
detected at low energy is disappointing, but it also means that gauged R-symmetry may 
be a hidden property of the conventional framework of softly broken SUSY. Different 
low-energy properties could emerge from models in which the gauged R-symmetry is 
broken at a scale << MpI, and a toy model of this type was considered long ago [6]. 
It is not immediately clear how to generalize this model to agree with standard model 
phenomenology, and the issue of quadratic divergences would have to be reexamined 
since (D) ~ 0 in such a model. However the investigation of such models is suggested 
by the present work. 
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Appendix A 

We discuss the cancellation of quadratic divergences in a global SUSY model with 
N + 1 chiral multiplets (c/)i, Xi) coupled to an abelian vector multiplet (A~, A) with an 
FI term. The ith chiral multiplet has U(1)  charge ri. The Lagrangian is 

N 
~chiral = E ( ] ( 0/z "~ igAa) ~i[2 @ i-~iylx ( 01 ~ q_ igA~) LXi )  , ( A .  1 ) 

i=o 
N 

_ _l,~;~u,~ ~ -- _ , gauge- 4-- " /xp -t- XCa i x / 2 g ~ ( r i c / ) i X L X i  rigi-ARxi)  - ½g2D2 (A.2)  
i=0 

N 
D = Z rilqbi[2 -t- ~. (1.3)  

i--o 

We assume that the charge ro of qS0 and the FI constant ( have opposite signs, so there 
is a supersymmetric ground state in which (~b0) = v with v 2 = (~to and (qSi) = 0 for 
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i v~ 0. We then express ~b0 (x) as 

1 
OSo(x) = --~ (v + A (x )  + iB(x)  ) . (A.4) 

Quantum computations are performed in a covariant R( gauge with gauge-fixing and 
ghost Lagrangians 

- - ~ ( 0  • A + (grovy) z , (A.5) •gf= 

£ghost = aU~gu~7 -- (g2r~v2~l -- (g2r2vx~7. (A.6) 

We will study the two-point function of the unshifted fields and take ~b~ for definiteness. 
Since we are interested only in the quadratic divergence of each diagram, we express 
results as multiples of the integral 12 = f d4k/ (2~)4k  2. 

We find the quadratically divergent contribution to the mass shift from the one-loop, 
one-particle irreducible (1PI) diagrams with quartic interactions and circulating ~bi, A, 
and the NG boson, B, is 

.Sa = ~ + /2, (A.7) 
i=0 

There is also a quadratic contribution from three 1PI diagrams, two involving the gauge 
boson and one a fermion pair A and X1, 

Xb = -r212. (A.8) 

Thus the sum of all 1PI diagrams is 

N 

~1I'I = rl Z riI2, (A.9) 
i=0 

which confirms the result of [ 15,16] that there is a quadratic divergence unless trR = 

~ r i  = O. 

However, in the spontaneously broken theory, there are additional quadratically diver- 
gent tadpole diagrams in which the fields qSi, A, B, A~, and r/circulate in the loop and 
another in which the fermions h and X0 are coupled by the mass insertion rovys. We 
find that the sum of the tadpole graphs is 

N 

~tadpole = - - r l  Z riI2' (A.10)  
i=0 

which exactly cancels the 1PI graphs! 
Thus there is no quadratically divergent mass shift for the d?i(x) fields, with i v~ 0. 

The situation is different for the Higgs field A(x )  for which the 1PI and tadpole graphs 
contribute ro ~ riI2 and -3r0  ~'~ riI2, respectively. The quadratic divergence for A(x )  
thus cancels only if Tr R = 0. 
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It should be emphasized that the cancellation between 1PI and tadpole contributions 

to the mass shift of the q~i fields requires a precise relation between the vertex factors 

and the mass of the Higgs field. The needed relation is a consequence of the condition 

(D} = 0 and therefore reflects the fact that the vacuum is supersymmetric. The same 

cancellation will occur for the mass shift of the "light" scalars in any of the many 

possible supersymmetric vacua of the theory. 

The model studied in this appendix is considerably simpler than the full gauged R- 

supergravity theory of the main text. In the latter there are contributions to the R-Higgs 

scalar mass and vertices both from D-terms and from the superpotential (F- terms) .  

However the effects of the F-terms are suppressed by the ratio (m3/2/Mp1) 2 compared 

to the dominant  D-terms. So the modification of the quadratic divergences due to the 

F-terms is of the same order as that of the graviton and gravitino diagrams discussed at 

the end of Section 6. 
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